Univ Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, F-35000 Rennes, France; Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Univ Rennes, Inserm, Southeast University, F-35000 Rennes, France, Nanjing 210096, China.
Univ Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, F-35000 Rennes, France; Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Univ Rennes, Inserm, Southeast University, F-35000 Rennes, France, Nanjing 210096, China.
Med Image Anal. 2025 Jan;99:103378. doi: 10.1016/j.media.2024.103378. Epub 2024 Oct 30.
Deep learning-based automated segmentation of vascular structures in preoperative CT angiography (CTA) images contributes to computer-assisted diagnosis and interventions. While CTA is the common standard, non-contrast CT imaging has the advantage of avoiding complications associated with contrast agents. However, the challenges of labor-intensive labeling and high labeling variability due to the ambiguity of vascular boundaries hinder conventional strong-label-based, fully-supervised learning in non-contrast CTs. This paper introduces a novel weakly-supervised framework using the elliptical topology nature of vascular structures in CT slices. It includes an efficient annotation process based on our proposed standards, an approach of generating 2D Gaussian heatmaps serving as pseudo labels, and a training process through a combination of voxel reconstruction loss and distribution loss with the pseudo labels. We assess the effectiveness of the proposed method on one local and two public datasets comprising non-contrast CT scans, particularly focusing on the abdominal aorta. On the local dataset, our weakly-supervised learning approach based on pseudo labels outperforms strong-label-based fully-supervised learning (1.54% of Dice score on average), reducing labeling time by around 82.0%. The efficiency in generating pseudo labels allows the inclusion of label-agnostic external data in the training set, leading to an additional improvement in performance (2.74% of Dice score on average) with a reduction of 66.3% labeling time, where the labeling time remains considerably less than that of strong labels. On the public dataset, the pseudo labels achieve an overall improvement of 1.95% in Dice score for 2D models with a reduction of 68% of the Hausdorff distance for 3D model.
深度学习辅助的术前 CT 血管造影(CTA)图像中血管结构的自动分割有助于计算机辅助诊断和介入治疗。虽然 CTA 是常用的标准,但非对比 CT 成像具有避免与造影剂相关的并发症的优势。然而,由于血管边界的模糊性导致的劳动密集型标注和高标注可变性,阻碍了常规的基于强标签的、完全监督的非对比 CT 学习。本文提出了一种新的基于弱监督框架,利用 CT 切片中血管结构的椭圆拓扑性质。它包括一个基于我们提出的标准的高效标注过程、一种生成二维高斯热图作为伪标签的方法,以及一个通过结合体素重建损失和分布损失与伪标签的训练过程。我们评估了所提出的方法在一个本地数据集和两个包含非对比 CT 扫描的公共数据集上的有效性,特别是侧重于腹主动脉。在本地数据集上,我们基于伪标签的弱监督学习方法优于基于强标签的完全监督学习方法(平均 Dice 分数提高 1.54%),标注时间减少了约 82.0%。生成伪标签的效率允许在训练集中包含与标签无关的外部数据,从而导致性能的进一步提高(平均 Dice 分数提高 2.74%),标注时间减少了 66.3%,其中标注时间仍然明显少于强标签。在公共数据集上,二维模型的 Dice 分数总体提高了 1.95%,三维模型的 Hausdorff 距离减少了 68%。