Department of Neurosurgery, Inselspital, University Hospital Bern, Bern, Switzerland.
Department of Neurosurgery and Neurorestoration, Klinikum Klagenfurt Am Wörthersee, Klagenfurt, Austria.
Acta Neurochir (Wien). 2024 Feb 7;166(1):69. doi: 10.1007/s00701-024-05940-3.
Over the recent decades, the number of different manufacturers and models of cerebrospinal fluid shunt valves constantly increased. Proper identification of shunt valves on X-ray images is crucial to neurosurgeons and radiologists to derive further details of a specific shunt valve, such as opening pressure settings and MR scanning conditions. The main aim of this study is to evaluate the feasibility of an AI-assisted shunt valve detection system.
The dataset used contains 2070 anonymized images of ten different, commonly used shunt valve types. All images were acquired from skull X-rays or scout CT-images. The images were randomly split into a 80% training and 20% validation set. An implementation in Python with the FastAi library was used to train a convolutional neural network (CNN) using a transfer learning method on a pre-trained model.
Overall, our model achieved an F1-score of 99% to predict the correct shunt valve model. F1-scores for individual shunt valves ranged from 92% for the Sophysa Sophy Mini SM8 to 100% for several other models.
This technology has the potential to automatically detect different shunt valve models in a fast and precise way and may facilitate the identification of an unknown shunt valve on X-ray or CT scout images. The deep learning model we developed could be integrated into PACS systems or standalone mobile applications to enhance clinical workflows.
近几十年来,脑脊液分流阀的制造商和型号不断增加。神经外科医生和放射科医生正确识别 X 射线图像上的分流阀对于获取特定分流阀的详细信息(如开口压力设置和磁共振扫描条件)至关重要。本研究的主要目的是评估人工智能辅助分流阀检测系统的可行性。
本研究使用的数据集包含十种常用分流阀类型的 2070 张匿名图像。所有图像均来自颅骨 X 射线或 scout CT 图像。这些图像被随机分为 80%的训练集和 20%的验证集。使用 Python 中的 FastAi 库,我们使用迁移学习方法在预训练模型上训练了一个卷积神经网络(CNN)。
总体而言,我们的模型在预测正确的分流阀模型方面的 F1 得分为 99%。个别分流阀的 F1 得分从 Sophysa Sophy Mini SM8 的 92%到其他几个模型的 100%不等。
这项技术有可能以快速、精确的方式自动检测不同的分流阀模型,并有助于在 X 射线或 CT scout 图像上识别未知的分流阀。我们开发的深度学习模型可以集成到 PACS 系统或独立的移动应用程序中,以增强临床工作流程。