Suppr超能文献

应用深度学习于神经外科:在脑积水患者中识别脑脊髓液(CSF)分流系统。

Applied deep learning in neurosurgery: identifying cerebrospinal fluid (CSF) shunt systems in hydrocephalus patients.

机构信息

Department of Neurosurgery, Inselspital, University Hospital Bern, Bern, Switzerland.

Department of Neurosurgery and Neurorestoration, Klinikum Klagenfurt Am Wörthersee, Klagenfurt, Austria.

出版信息

Acta Neurochir (Wien). 2024 Feb 7;166(1):69. doi: 10.1007/s00701-024-05940-3.

Abstract

BACKGROUND

Over the recent decades, the number of different manufacturers and models of cerebrospinal fluid shunt valves constantly increased. Proper identification of shunt valves on X-ray images is crucial to neurosurgeons and radiologists to derive further details of a specific shunt valve, such as opening pressure settings and MR scanning conditions. The main aim of this study is to evaluate the feasibility of an AI-assisted shunt valve detection system.

METHODS

The dataset used contains 2070 anonymized images of ten different, commonly used shunt valve types. All images were acquired from skull X-rays or scout CT-images. The images were randomly split into a 80% training and 20% validation set. An implementation in Python with the FastAi library was used to train a convolutional neural network (CNN) using a transfer learning method on a pre-trained model.

RESULTS

Overall, our model achieved an F1-score of 99% to predict the correct shunt valve model. F1-scores for individual shunt valves ranged from 92% for the Sophysa Sophy Mini SM8 to 100% for several other models.

CONCLUSION

This technology has the potential to automatically detect different shunt valve models in a fast and precise way and may facilitate the identification of an unknown shunt valve on X-ray or CT scout images. The deep learning model we developed could be integrated into PACS systems or standalone mobile applications to enhance clinical workflows.

摘要

背景

近几十年来,脑脊液分流阀的制造商和型号不断增加。神经外科医生和放射科医生正确识别 X 射线图像上的分流阀对于获取特定分流阀的详细信息(如开口压力设置和磁共振扫描条件)至关重要。本研究的主要目的是评估人工智能辅助分流阀检测系统的可行性。

方法

本研究使用的数据集包含十种常用分流阀类型的 2070 张匿名图像。所有图像均来自颅骨 X 射线或 scout CT 图像。这些图像被随机分为 80%的训练集和 20%的验证集。使用 Python 中的 FastAi 库,我们使用迁移学习方法在预训练模型上训练了一个卷积神经网络(CNN)。

结果

总体而言,我们的模型在预测正确的分流阀模型方面的 F1 得分为 99%。个别分流阀的 F1 得分从 Sophysa Sophy Mini SM8 的 92%到其他几个模型的 100%不等。

结论

这项技术有可能以快速、精确的方式自动检测不同的分流阀模型,并有助于在 X 射线或 CT scout 图像上识别未知的分流阀。我们开发的深度学习模型可以集成到 PACS 系统或独立的移动应用程序中,以增强临床工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a8e/10847194/0e80a2becfde/701_2024_5940_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验