Vach Marius, Weiss Daniel, Ivan Vivien Lorena, Boschenriedter Christian, Wolf Luisa, Beez Thomas, Hofmann Björn B, Rubbert Christian, Caspers Julian
Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
Clin Neuroradiol. 2025 Jun;35(2):347-354. doi: 10.1007/s00062-024-01490-4. Epub 2025 Jan 14.
Ventriculoperitoneal shunts (VPS) are an essential part of the treatment of hydrocephalus, with numerous valve models available with different ways of indicating pressure levels. The model types often need to be identified on X‑rays to assess pressure levels using a matching template. Artificial intelligence (AI), in particular deep learning, is ideally suited to automate repetitive tasks such as identifying different VPS valve models. The aim of this work was to investigate whether AI, in particular deep learning, allows the identification of VPS models in cranial X‑rays.
959 cranial X‑rays of patients with a VPS were included and reviewed for image quality and complete visualization of VPS valves. The images included four VPS model types: Codman Hakim (n = 774, 81%), Codman Certas Plus (n = 117, 12%), Sophysa Sophy Mini SM8 (n = 35, 4%) and proGAV 2.0 (n = 33, 3%). A Convolutional Neural Network (CNN) was trained using stratified five-fold cross-validation to classify the four VPS model types in the dataset. A finetuned CNN pretrained on the ImageNet dataset as well as a model trained from scratch were compared. The averaged performance and uncertainty metrics were evaluated across the cross-validation splits.
The fine-tuned model identified VPS valve models with a mean accuracy of 0.98 ± 0.01, macro-averaged F1 score of 0.93 ± 0.04, a recall of 0.94 ± 0.03 and a precision of 0.95 ± 0.08 across the five cross-validation splits.
Automatic classification of VPS valve models in skull X‑rays, using fully automatable preprocessing steps and a CNN, is feasible. This is an encouraging finding to further explore the possibility of automating VPS valve model identification and pressure level reading in skull X‑rays.
脑室腹腔分流术(VPS)是脑积水治疗的重要组成部分,有多种瓣膜模型可供选择,其指示压力水平的方式各不相同。通常需要通过X射线识别模型类型,以便使用匹配模板评估压力水平。人工智能(AI),尤其是深度学习,非常适合自动化识别不同VPS瓣膜模型等重复性任务。这项工作的目的是研究AI,尤其是深度学习,是否能够在颅骨X射线中识别VPS模型。
纳入959例接受VPS治疗患者的颅骨X射线,对图像质量和VPS瓣膜的完整可视化进行评估。图像包括四种VPS模型类型:Codman Hakim(n = 774,81%)、Codman Certas Plus(n = 117,12%)、Sophysa Sophy Mini SM8(n = 35,4%)和proGAV 2.0(n = 33,3%)。使用分层五折交叉验证训练卷积神经网络(CNN),以对数据集中的四种VPS模型类型进行分类。比较了在ImageNet数据集上预训练的微调CNN以及从头开始训练的模型。在交叉验证分割中评估平均性能和不确定性指标。
在五个交叉验证分割中,微调模型识别VPS瓣膜模型的平均准确率为0.98±0.01,宏平均F1分数为0.93±0.04,召回率为0.94±0.03,精确率为0.95±0.08。
使用完全可自动化的预处理步骤和CNN对颅骨X射线中的VPS瓣膜模型进行自动分类是可行的。这一令人鼓舞的发现为进一步探索颅骨X射线中VPS瓣膜模型识别和压力水平读取自动化的可能性提供了依据。