Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, HKSAR, China.
Hong Kong Center for Neurodegenerative Diseases, InnoHK, HKSAR, China.
Alzheimers Dement. 2024 Apr;20(4):2469-2484. doi: 10.1002/alz.13691. Epub 2024 Feb 7.
Blood protein biomarkers demonstrate potential for Alzheimer's disease (AD) diagnosis. Limited studies examine the molecular changes in AD blood cells.
Bulk RNA-sequencing of blood cells was performed on AD patients of Chinese descent (n = 214 and 26 in the discovery and validation cohorts, respectively) with normal controls (n = 208 and 38 in the discovery and validation cohorts, respectively). Weighted gene co-expression network analysis (WGCNA) and deconvolution analysis identified AD-associated gene modules and blood cell types. Regression and unsupervised clustering analysis identified AD-associated genes, gene modules, cell types, and established AD classification models.
WGCNA on differentially expressed genes revealed 15 gene modules, with 6 accurately classifying AD (areas under the receiver operating characteristics curve [auROCs] > 0.90). These modules stratified AD patients into subgroups with distinct disease states. Cell-type deconvolution analysis identified specific blood cell types potentially associated with AD pathogenesis.
This study highlights the potential of blood transcriptome for AD diagnosis, patient stratification, and mechanistic studies.
We comprehensively analyze the blood transcriptomes of a well-characterized Alzheimer's disease cohort to identify genes, gene modules, pathways, and specific blood cells associated with the disease. Blood transcriptome analysis accurately classifies and stratifies patients with Alzheimer's disease, with some gene modules achieving classification accuracy comparable to that of the plasma ATN biomarkers. Immune-associated pathways and immune cells, such as neutrophils, have potential roles in the pathogenesis and progression of Alzheimer's disease.
血液蛋白生物标志物在阿尔茨海默病(AD)诊断方面具有潜力。目前已有一些研究探讨了 AD 患者血液细胞中的分子变化。
对具有华裔背景的 AD 患者(分别在发现和验证队列中包括 214 名和 26 名患者)和正常对照者(分别在发现和验证队列中包括 208 名和 38 名对照者)进行血液细胞的批量 RNA 测序。采用加权基因共表达网络分析(WGCNA)和去卷积分析鉴定与 AD 相关的基因模块和血液细胞类型。回归和无监督聚类分析鉴定与 AD 相关的基因、基因模块、细胞类型,并建立 AD 分类模型。
对差异表达基因进行 WGCNA 分析,揭示了 15 个基因模块,其中 6 个模块可准确地对 AD 进行分类(接受者操作特征曲线下面积 [auROCs]>0.90)。这些模块将 AD 患者分为具有不同疾病状态的亚组。细胞类型去卷积分析鉴定了与 AD 发病机制潜在相关的特定血液细胞类型。
本研究强调了血液转录组在 AD 诊断、患者分层和机制研究方面的潜在价值。
我们全面分析了一组具有明确特征的 AD 患者的血液转录组,以鉴定与疾病相关的基因、基因模块、途径和特定的血液细胞。血液转录组分析能准确地对 AD 患者进行分类和分层,一些基因模块的分类准确性可与血浆 ATN 生物标志物相媲美。免疫相关途径和免疫细胞(如中性粒细胞)可能在 AD 的发病机制和进展中发挥作用。