Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
J Gerontol A Biol Sci Med Sci. 2023 Mar 30;78(4):653-658. doi: 10.1093/gerona/glac179.
Previous transcriptome-wide association study (TWAS) has documented 21 genes associated with Alzheimer's disease (AD) risk, but the predictive biomarkers remain unexplored.
TWAS leveraging the unified test for molecular signatures (UTMOST) was performed in 75,000 cases and 420,000 controls with 10 brain tissue gene expression references. Weighted gene coexpression network analysis (WGCNA) was conducted in GSE5281 and GSE48350 data sets containing 167 AD samples and 247 controls. Random forest (RF) analysis was applied to screen the potential predictive biomarkers based on overlapping genes identified by TWAS and WGCNA, followed by comprehensive bioinformatic analyses with differential gene expression, functional enrichment, and correlation with immune cells. A nomogram was established to verify the predictive power of the identified biomarkers.
TWAS revealed 78 candidate genes (p < 2.89 × 10-6). In WGCNA turquoise module, 3 718 AD-related genes were screened. RF identified 5 predictive biomarkers (FAM71E1, DDB2, AP4M1, GPR4, DOC2A), which are enriched in the global genome nucleotide excision repair pathway and associated with immune cell designations "Natural.killer.T.cell," "Memory.B.cell," "T.follicular.helper.cell," "Neutrophil," and "MDSC." The nomogram based on the 5 markers showed a high predictive power.
Five potential predictive biomarkers for AD were identified, providing new insights into the pathogenesis and etiology of AD.
先前的全转录组关联研究(TWAS)已经记录了 21 个与阿尔茨海默病(AD)风险相关的基因,但预测生物标志物仍未得到探索。
在包含 10 个脑组织基因表达参考的 75000 例病例和 420000 例对照中,利用分子特征综合检验(UTMOST)进行 TWAS。在包含 167 例 AD 样本和 247 例对照的 GSE5281 和 GSE48350 数据集中进行加权基因共表达网络分析(WGCNA)。基于 TWAS 和 WGCNA 鉴定的重叠基因,应用随机森林(RF)分析筛选潜在的预测生物标志物,随后进行差异基因表达、功能富集和与免疫细胞相关性的综合生物信息学分析。建立列线图以验证鉴定生物标志物的预测能力。
TWAS 揭示了 78 个候选基因(p < 2.89 × 10-6)。在 WGCNA 绿松石模块中,筛选出 3718 个与 AD 相关的基因。RF 鉴定出 5 个预测生物标志物(FAM71E1、DDB2、AP4M1、GPR4、DOC2A),它们富集在全基因组核苷酸切除修复途径中,与免疫细胞命名为“Natural.killer.T.cell”、“Memory.B.cell”、“T.follicular.helper.cell”、“Neutrophil”和“MDSC”有关。基于 5 个标志物的列线图显示出较高的预测能力。
鉴定出 5 个 AD 的潜在预测生物标志物,为 AD 的发病机制和病因学提供了新的见解。