Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA.
Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA.
Curr Gastroenterol Rep. 2024 Apr;26(4):115-123. doi: 10.1007/s11894-024-00921-z. Epub 2024 Feb 7.
Artificial intelligence (AI) is a broad term that pertains to a computer's ability to mimic and sometimes surpass human intelligence in interpretation of large datasets. The adoption of AI in gastrointestinal motility has been slower compared to other areas such as polyp detection and interpretation of histopathology.
Within esophageal physiologic testing, AI can automate interpretation of image-based tests, especially high resolution manometry (HRM) and functional luminal imaging probe (FLIP) studies. Basic tasks such as identification of landmarks, determining adequacy of the HRM study and identification from achalasia from non-achalasia patterns are achieved with good accuracy. However, existing AI systems compare AI interpretation to expert analysis rather than to clinical outcome from management based on AI diagnosis. The use of AI methods is much less advanced within the field of ambulatory reflux monitoring, where challenges exist in assimilation of data from multiple impedance and pH channels. There remains potential for replication of the AI successes within esophageal physiologic testing to HRM of the anorectum, and to innovative and novel methods of evaluating gastric electrical activity and motor function. The use of AI has tremendous potential to improve detection of dysmotility within the esophagus using esophageal physiologic testing, as well as in other regions of the gastrointestinal tract. Eventually, integration of patient presentation, demographics and alternate test results to individual motility test interpretation will improve diagnostic precision and prognostication using AI tools.
人工智能(AI)是一个广义术语,涉及计算机模拟人类智能的能力,并且在解释大型数据集方面有时甚至可以超越人类智能。与息肉检测和组织病理学解释等其他领域相比,AI 在胃肠动力领域的应用速度较慢。
在食管生理测试中,AI 可以自动解释基于图像的测试,特别是高分辨率测压(HRM)和功能性腔内成像探头(FLIP)研究。基本任务,如地标识别、确定 HRM 研究的充分性以及从正常食管动力障碍中识别贲门失弛缓症,都可以达到很好的准确性。然而,现有的 AI 系统将 AI 解释与专家分析进行比较,而不是与基于 AI 诊断的管理后的临床结果进行比较。在动态反流监测领域,AI 方法的使用还远不够先进,在该领域,从多个阻抗和 pH 通道吸收数据存在挑战。在将 AI 在食管生理测试中对 HRM 的成功复制到肛门直肠,以及评估胃电活动和运动功能的创新和新颖方法方面仍然存在潜力。AI 的使用具有很大的潜力,可以通过食管生理测试提高对食管动力障碍的检测,以及在胃肠道的其他区域。最终,通过将患者表现、人口统计学和其他测试结果整合到个体动力测试解释中,将使用 AI 工具提高诊断精度和预后预测。