Suppr超能文献

人工智能工具在提高食管动力障碍测压诊断中的应用。

Artificial Intelligence Tools for Improving Manometric Diagnosis of Esophageal Dysmotility.

机构信息

Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA.

Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA.

出版信息

Curr Gastroenterol Rep. 2024 Apr;26(4):115-123. doi: 10.1007/s11894-024-00921-z. Epub 2024 Feb 7.

Abstract

PURPOSE OF REVIEW

Artificial intelligence (AI) is a broad term that pertains to a computer's ability to mimic and sometimes surpass human intelligence in interpretation of large datasets. The adoption of AI in gastrointestinal motility has been slower compared to other areas such as polyp detection and interpretation of histopathology.

RECENT FINDINGS

Within esophageal physiologic testing, AI can automate interpretation of image-based tests, especially high resolution manometry (HRM) and functional luminal imaging probe (FLIP) studies. Basic tasks such as identification of landmarks, determining adequacy of the HRM study and identification from achalasia from non-achalasia patterns are achieved with good accuracy. However, existing AI systems compare AI interpretation to expert analysis rather than to clinical outcome from management based on AI diagnosis. The use of AI methods is much less advanced within the field of ambulatory reflux monitoring, where challenges exist in assimilation of data from multiple impedance and pH channels. There remains potential for replication of the AI successes within esophageal physiologic testing to HRM of the anorectum, and to innovative and novel methods of evaluating gastric electrical activity and motor function. The use of AI has tremendous potential to improve detection of dysmotility within the esophagus using esophageal physiologic testing, as well as in other regions of the gastrointestinal tract. Eventually, integration of patient presentation, demographics and alternate test results to individual motility test interpretation will improve diagnostic precision and prognostication using AI tools.

摘要

目的综述

人工智能(AI)是一个广义术语,涉及计算机模拟人类智能的能力,并且在解释大型数据集方面有时甚至可以超越人类智能。与息肉检测和组织病理学解释等其他领域相比,AI 在胃肠动力领域的应用速度较慢。

最新发现

在食管生理测试中,AI 可以自动解释基于图像的测试,特别是高分辨率测压(HRM)和功能性腔内成像探头(FLIP)研究。基本任务,如地标识别、确定 HRM 研究的充分性以及从正常食管动力障碍中识别贲门失弛缓症,都可以达到很好的准确性。然而,现有的 AI 系统将 AI 解释与专家分析进行比较,而不是与基于 AI 诊断的管理后的临床结果进行比较。在动态反流监测领域,AI 方法的使用还远不够先进,在该领域,从多个阻抗和 pH 通道吸收数据存在挑战。在将 AI 在食管生理测试中对 HRM 的成功复制到肛门直肠,以及评估胃电活动和运动功能的创新和新颖方法方面仍然存在潜力。AI 的使用具有很大的潜力,可以通过食管生理测试提高对食管动力障碍的检测,以及在胃肠道的其他区域。最终,通过将患者表现、人口统计学和其他测试结果整合到个体动力测试解释中,将使用 AI 工具提高诊断精度和预后预测。

相似文献

1
Artificial Intelligence Tools for Improving Manometric Diagnosis of Esophageal Dysmotility.
Curr Gastroenterol Rep. 2024 Apr;26(4):115-123. doi: 10.1007/s11894-024-00921-z. Epub 2024 Feb 7.
3
How to Optimally Apply Impedance in the Evaluation of Esophageal Dysmotility.
Curr Gastroenterol Rep. 2016 Nov;18(11):60. doi: 10.1007/s11894-016-0534-9.
6
Four-Dimensional Impedance Manometry in Esophageal Motility Disorders.
Am J Gastroenterol. 2025 May 1;120(5):1019-1026. doi: 10.14309/ajg.0000000000003151. Epub 2024 Oct 18.
7
Automatic Diagnosis of High-Resolution Esophageal Manometry Using Artificial Intelligence.
J Gastrointestin Liver Dis. 2022 Dec 16;31(4):383-389. doi: 10.15403/jgld-4525.
8
Interrater Reliability of Functional Lumen Imaging Probe Panometry and High-Resolution Manometry for the Assessment of Esophageal Motility Disorders.
Am J Gastroenterol. 2023 Aug 1;118(8):1334-1343. doi: 10.14309/ajg.0000000000002285. Epub 2023 Apr 11.
9
High-resolution manometry and impedance-pH/manometry: valuable tools in clinical and investigational esophagology.
Gastroenterology. 2008 Sep;135(3):756-69. doi: 10.1053/j.gastro.2008.05.048. Epub 2008 Jul 17.
10
Mechanisms of repetitive retrograde contractions in response to sustained esophageal distension: a study evaluating patients with postfundoplication dysphagia.
Am J Physiol Gastrointest Liver Physiol. 2018 Mar 1;314(3):G334-G340. doi: 10.1152/ajpgi.00368.2017. Epub 2017 Dec 21.

引用本文的文献

1
ChatGPT Is Not Yet Ready to Replace Motility Experts.
Clin Gastroenterol Hepatol. 2025 Jul 22. doi: 10.1016/j.cgh.2025.04.033.
2
The Reverse Red-Green-Blue Rule: A Color-Coded Approach for Simplified Achalasia Diagnosis via High-Resolution Manometry.
Gastroenterology Res. 2025 Jun;18(3):149-151. doi: 10.14740/gr2040. Epub 2025 Jun 4.

本文引用的文献

1
Where Medical Statistics Meets Artificial Intelligence.
N Engl J Med. 2023 Sep 28;389(13):1211-1219. doi: 10.1056/NEJMra2212850.
2
Evaluation of the Potential Utility of an Artificial Intelligence Chatbot in Gastroesophageal Reflux Disease Management.
Am J Gastroenterol. 2023 Dec 1;118(12):2276-2279. doi: 10.14309/ajg.0000000000002397. Epub 2023 Jul 10.
5
Automatic Diagnosis of High-Resolution Esophageal Manometry Using Artificial Intelligence.
J Gastrointestin Liver Dis. 2022 Dec 16;31(4):383-389. doi: 10.15403/jgld-4525.
6
Computer-aided Detection of Polyps Does Not Improve Colonoscopist Performance in a Pragmatic Implementation Trial.
Gastroenterology. 2023 Mar;164(3):481-483.e6. doi: 10.1053/j.gastro.2022.12.004. Epub 2022 Dec 15.
8
Virtual disease landscape using mechanics-informed machine learning: Application to esophageal disorders.
Artif Intell Med. 2022 Dec;134:102435. doi: 10.1016/j.artmed.2022.102435. Epub 2022 Oct 31.
10
Video-Based Deep Learning to Detect Dyssynergic Defecation with 3D High-Definition Anorectal Manometry.
Dig Dis Sci. 2023 May;68(5):2015-2022. doi: 10.1007/s10620-022-07759-3. Epub 2022 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验