Second Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania.
Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
Medicina (Kaunas). 2024 Sep 13;60(9):1493. doi: 10.3390/medicina60091493.
To develop a deep learning model for esophageal motility disorder diagnosis using high-resolution manometry images with the aid of Gemini. Gemini assisted in developing this model by aiding in code writing, preprocessing, model optimization, and troubleshooting. The model demonstrated an overall precision of 0.89 on the testing set, with an accuracy of 0.88, a recall of 0.88, and an F1-score of 0.885. It presented better results for multiple categories, particularly in the panesophageal pressurization category, with precision = 0.99 and recall = 0.99, yielding a balanced F1-score of 0.99. This study demonstrates the potential of artificial intelligence, particularly Gemini, in aiding the creation of robust deep learning models for medical image analysis, solving not just simple binary classification problems but more complex, multi-class image classification tasks.
利用 Gemini 辅助高分辨率测压图像开发食管动力障碍诊断的深度学习模型。 Gemini 通过辅助代码编写、预处理、模型优化和故障排除来帮助开发此模型。 该模型在测试集上的整体精度为 0.89,准确率为 0.88,召回率为 0.88,F1 得分为 0.885。它在多个类别中呈现出更好的结果,特别是在全食管加压类别中,精度=0.99,召回率=0.99,产生平衡的 F1 得分为 0.99。 这项研究展示了人工智能,特别是 Gemini 的潜力,它可以帮助创建用于医学图像分析的强大深度学习模型,不仅可以解决简单的二进制分类问题,还可以解决更复杂的多类图像分类任务。