Suppr超能文献

联邦学习在黑色素瘤诊断中的去中心化人工智能应用。

Federated Learning for Decentralized Artificial Intelligence in Melanoma Diagnostics.

机构信息

Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.

Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany.

出版信息

JAMA Dermatol. 2024 Mar 1;160(3):303-311. doi: 10.1001/jamadermatol.2023.5550.

Abstract

IMPORTANCE

The development of artificial intelligence (AI)-based melanoma classifiers typically calls for large, centralized datasets, requiring hospitals to give away their patient data, which raises serious privacy concerns. To address this concern, decentralized federated learning has been proposed, where classifier development is distributed across hospitals.

OBJECTIVE

To investigate whether a more privacy-preserving federated learning approach can achieve comparable diagnostic performance to a classical centralized (ie, single-model) and ensemble learning approach for AI-based melanoma diagnostics.

DESIGN, SETTING, AND PARTICIPANTS: This multicentric, single-arm diagnostic study developed a federated model for melanoma-nevus classification using histopathological whole-slide images prospectively acquired at 6 German university hospitals between April 2021 and February 2023 and benchmarked it using both a holdout and an external test dataset. Data analysis was performed from February to April 2023.

EXPOSURES

All whole-slide images were retrospectively analyzed by an AI-based classifier without influencing routine clinical care.

MAIN OUTCOMES AND MEASURES

The area under the receiver operating characteristic curve (AUROC) served as the primary end point for evaluating the diagnostic performance. Secondary end points included balanced accuracy, sensitivity, and specificity.

RESULTS

The study included 1025 whole-slide images of clinically melanoma-suspicious skin lesions from 923 patients, consisting of 388 histopathologically confirmed invasive melanomas and 637 nevi. The median (range) age at diagnosis was 58 (18-95) years for the training set, 57 (18-93) years for the holdout test dataset, and 61 (18-95) years for the external test dataset; the median (range) Breslow thickness was 0.70 (0.10-34.00) mm, 0.70 (0.20-14.40) mm, and 0.80 (0.30-20.00) mm, respectively. The federated approach (0.8579; 95% CI, 0.7693-0.9299) performed significantly worse than the classical centralized approach (0.9024; 95% CI, 0.8379-0.9565) in terms of AUROC on a holdout test dataset (pairwise Wilcoxon signed-rank, P < .001) but performed significantly better (0.9126; 95% CI, 0.8810-0.9412) than the classical centralized approach (0.9045; 95% CI, 0.8701-0.9331) on an external test dataset (pairwise Wilcoxon signed-rank, P < .001). Notably, the federated approach performed significantly worse than the ensemble approach on both the holdout (0.8867; 95% CI, 0.8103-0.9481) and external test dataset (0.9227; 95% CI, 0.8941-0.9479).

CONCLUSIONS AND RELEVANCE

The findings of this diagnostic study suggest that federated learning is a viable approach for the binary classification of invasive melanomas and nevi on a clinically representative distributed dataset. Federated learning can improve privacy protection in AI-based melanoma diagnostics while simultaneously promoting collaboration across institutions and countries. Moreover, it may have the potential to be extended to other image classification tasks in digital cancer histopathology and beyond.

摘要

重要性

基于人工智能 (AI) 的黑色素瘤分类器的开发通常需要大型的集中式数据集,这要求医院放弃患者的数据,这引发了严重的隐私问题。为了解决这个问题,已经提出了去中心化的联邦学习,其中分类器的开发在医院之间分布式进行。

目的

研究在人工智能黑色素瘤诊断中,与经典的集中式(即单一模型)和集成学习方法相比,更注重隐私保护的联邦学习方法是否可以达到相当的诊断性能。

设计、设置和参与者:这项多中心、单臂诊断研究使用 6 家德国大学医院在 2021 年 4 月至 2023 年 2 月期间前瞻性采集的组织病理学全幻灯片图像开发了一个用于黑色素瘤-痣分类的联邦模型,并使用保留数据集和外部测试数据集对其进行了基准测试。数据分析于 2023 年 2 月至 4 月进行。

暴露

所有全幻灯片图像均由基于 AI 的分类器进行回顾性分析,而不影响常规临床护理。

主要结果和测量

接收者操作特征曲线下的面积(AUROC)作为评估诊断性能的主要终点。次要终点包括平衡准确性、敏感性和特异性。

结果

该研究纳入了来自 923 名患者的 1025 张临床疑似黑色素瘤皮肤病变的全幻灯片图像,其中包括 388 例经组织病理学证实的侵袭性黑色素瘤和 637 例痣。训练集的诊断中位(范围)年龄为 58(18-95)岁,保留测试数据集为 57(18-93)岁,外部测试数据集为 61(18-95)岁;中位(范围)Breslow 厚度分别为 0.70(0.10-34.00)mm、0.70(0.20-14.40)mm和 0.80(0.30-20.00)mm。联邦方法(0.8579;95%置信区间,0.7693-0.9299)在保留测试数据集上的 AUROC 显著低于经典集中式方法(0.9024;95%置信区间,0.8379-0.9565)(配对 Wilcoxon 符号秩检验,P<0.001),但在外部测试数据集上的表现明显优于经典集中式方法(0.9126;95%置信区间,0.8810-0.9412)(配对 Wilcoxon 符号秩检验,P<0.001)。值得注意的是,联邦方法在保留和外部测试数据集上的表现均显著低于集成方法(保留数据集:0.8867;95%置信区间,0.8103-0.9481;外部测试数据集:0.9227;95%置信区间,0.8941-0.9479)。

结论和相关性

这项诊断研究的结果表明,联邦学习是一种可行的方法,可用于在具有代表性的分布式数据集上对侵袭性黑色素瘤和痣进行二进制分类。联邦学习可以在保护人工智能黑色素瘤诊断中的隐私的同时,促进机构和国家之间的合作。此外,它可能有潜力扩展到数字癌症组织病理学和其他领域的其他图像分类任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/10851139/4ccd8938a21b/jamadermatol-e235550-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验