Liu Te, Huang Sichao, Zhang Qian, Xia Yu, Zhang Manjie, Sun Bin
Research Center for Pharmacoinformatics, College of Pharmacy, Harbin Medical University, Harbin, China.
PLoS Comput Biol. 2024 Feb 7;20(2):e1011519. doi: 10.1371/journal.pcbi.1011519. eCollection 2024 Feb.
ASPP2 and iASPP bind to p53 through their conserved ANK-SH3 domains to respectively promote and inhibit p53-dependent cell apoptosis. While crystallography has indicated that these two proteins employ distinct surfaces of their ANK-SH3 domains to bind to p53, solution NMR data has suggested similar surfaces. In this study, we employed multi-scale molecular dynamics (MD) simulations combined with free energy calculations to reconcile the discrepancy in the binding modes. We demonstrated that the binding mode based solely on a single crystal structure does not enable iASPP's RT loop to engage with p53's C-terminal linker-a verified interaction. Instead, an ensemble of simulated iASPP-p53 complexes facilitates this interaction. We showed that the ensemble-average inter-protein contacting residues and NMR-detected interfacial residues qualitatively overlap on ASPP proteins, and the ensemble-average binding free energies better match experimental KD values compared to single crystallgarphy-determined binding mode. For iASPP, the sampled ensemble complexes can be grouped into two classes, resembling the binding modes determined by crystallography and solution NMR. We thus propose that crystal packing shifts the equilibrium of binding modes towards the crystallography-determined one. Lastly, we showed that the ensemble binding complexes are sensitive to p53's intrinsically disordered regions (IDRs), attesting to experimental observations that these IDRs contribute to biological functions. Our results provide a dynamic and ensemble perspective for scrutinizing these important cancer-related protein-protein interactions (PPIs).
ASPP2和iASPP通过其保守的ANK-SH3结构域与p53结合,分别促进和抑制p53依赖性细胞凋亡。虽然晶体学表明这两种蛋白质利用其ANK-SH3结构域的不同表面与p53结合,但溶液核磁共振数据表明存在相似的表面。在本研究中,我们采用多尺度分子动力学(MD)模拟结合自由能计算来调和结合模式上的差异。我们证明,仅基于单晶结构的结合模式无法使iASPP的RT环与p53的C末端连接子相互作用——这是一种已证实的相互作用。相反,一组模拟的iASPP-p53复合物促进了这种相互作用。我们表明,ASPP蛋白上的集合平均蛋白间接触残基和核磁共振检测到的界面残基在定性上重叠,并且与单晶结构确定的结合模式相比,集合平均结合自由能与实验KD值更匹配。对于iASPP,采样的集合复合物可分为两类,类似于由晶体学和溶液核磁共振确定的结合模式。因此,我们提出晶体堆积将结合模式的平衡向晶体学确定的方向移动。最后,我们表明集合结合复合物对p53的内在无序区域(IDR)敏感,这证实了这些IDR有助于生物学功能的实验观察。我们的结果为审视这些重要的癌症相关蛋白质-蛋白质相互作用(PPI)提供了一个动态的整体视角。