Suppr超能文献

基于能谱内结构感知图神经网络的半监督低剂量 SPECT 重建。

Semi-supervised low-dose SPECT restoration using sinogram inner-structure aware graph neural network.

机构信息

School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, People's Republic of China.

Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, People's Republic of China.

出版信息

Phys Med Biol. 2024 Feb 23;69(5). doi: 10.1088/1361-6560/ad2716.

Abstract

To mitigate the potential radiation risk, low-dose single photon emission computed tomography (SPECT) is of increasing interest. Numerous deep learning-based methods have been developed to perform low-dose imaging while maintaining image quality. However, most existing methods seldom explore the unique inner-structure inherent within sinograms. In addition, traditional supervised learning methods require large-scale labeled data, where the normal-dose data serves as annotation and is intractable to acquire in low-dose imaging. In this study, we aim to develop a novel sinogram inner-structure-aware semi-supervised framework for the task of low-dose SPECT sinogram restoration.The proposed framework retains the strengths of UNet, meanwhile introducing a sinogram-structure-based non-local neighbors graph neural network (SSN-GNN) module and a window-based K-nearest neighbors GNN (W-KNN-GNN) module to effectively exploit the inherent inner-structure within SPECT sinograms. Moreover, the proposed framework employs the mean teacher semi-supervised learning approach to leverage the information available in abundant unlabeled low-dose sinograms.The datasets exploited in this study were acquired from the (Extended Cardiac-Torso) XCAT anthropomorphic digital phantoms, which provide realistic images for imaging research of various modalities. Quantitative as well as qualitative results demonstrate that the proposed framework achieves superior performance compared to several state-of-the-art reconstruction methods. To further validate the effectiveness of the proposed framework, ablation and robustness experiments were also performed. The experimental results show that each component of the proposed framework effectively improves the model performance, and the framework exhibits superior robustness with respect to various noise levels. Besides, the proposed semi-supervised paradigm showcases the efficacy of incorporating supplementary unlabeled low-dose sinograms.The proposed framework improves the quality of low-dose SPECT reconstructed images by utilizing sinogram inner-structure and incorporating supplementary unlabeled data, which provides an important tool for dose reduction without sacrificing the image quality.

摘要

为了降低潜在的辐射风险,低剂量单光子发射计算机断层扫描(SPECT)越来越受到关注。已经开发了许多基于深度学习的方法来进行低剂量成像,同时保持图像质量。然而,大多数现有的方法很少探索在谱线图像中固有的独特内部结构。此外,传统的监督学习方法需要大规模的标记数据,其中正常剂量数据作为注释,在低剂量成像中难以获取。在这项研究中,我们旨在开发一种新颖的谱线图像内在结构感知的半监督框架,用于低剂量 SPECT 谱线图像恢复任务。该框架保留了 UNet 的优势,同时引入了基于谱线结构的非局部邻居图神经网络(SSN-GNN)模块和基于窗口的 K 最近邻图神经网络(W-KNN-GNN)模块,以有效地利用 SPECT 谱线图像中的固有内在结构。此外,该框架采用均值教师半监督学习方法来利用大量未标记的低剂量谱线图像中的信息。本研究中使用的数据集是从(扩展心脏-胸部)XCAT 人体数字体模中获取的,这些数据集为各种模态的成像研究提供了真实的图像。定量和定性结果表明,与几种最先进的重建方法相比,所提出的框架具有更好的性能。为了进一步验证该框架的有效性,还进行了消融和鲁棒性实验。实验结果表明,所提出框架的每个组成部分都有效地提高了模型性能,并且该框架在各种噪声水平下都表现出卓越的鲁棒性。此外,所提出的半监督范例展示了结合补充的未标记低剂量谱线图像的有效性。该框架通过利用谱线图像的内在结构和结合补充的未标记数据来提高低剂量 SPECT 重建图像的质量,为在不牺牲图像质量的情况下降低剂量提供了重要工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验