Wu Ruifan, Liu Haotian, Lai Peng, Yuan Woliang, Li Haiying, Jiang Ying
School of Computer Science and Engineering, and Guangdong Province Key Lab of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong, China.
Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
Med Phys. 2025 Jan;52(1):414-432. doi: 10.1002/mp.17459. Epub 2024 Oct 14.
Single Photon Emission Computed Tomography (SPECT) sinogram restoration for low-dose imaging is a critical challenge in medical imaging. Existing methods often overlook the characteristics of the sinograms, necessitating innovative approaches.
In this study, we introduce the Sinogram-characteristic-informed network (SCI-Net) to address the restoration of low-dose SPECT sinograms. Our aim is to build and train a model based on the characteristics of sinograms, including continuity, periodicity, multi-scale properties of lines in sinograms, and others, to enhance the model's understanding of the restoration process.
SCI-Net incorporates several novel mechanisms tailored to exploit the inherent characteristics of sinograms. We implement a channel attention module with a decay mechanism to leverage continuity across adjacent sinograms, while a position attention module captures global correlations within individual sinograms. Additionally, we propose a multi-stage progressive integration mechanism to balance local detail and overall structure. Multiple regularization terms, customized to sinogram image characteristics, are embedded into the loss function for model training.
The experimental evaluations are divided into two parts: simulation data evaluation and clinical evaluation. The simulation data evaluation is conducted on a dataset comprising ten organ types, generated by the SIMIND Monte Carlo program from extended cardiac-torso (XCAT) anatomical phantoms. The dataset includes a total of SPECT sinograms with low-dose as input data and normal-dose as ground truth, consisting of 3881 sinograms in the training dataset and 849 sinograms in the testing set. When comparing the restoration of low-dose sinograms to normal-dose references, SCI-Net effectively improves performance. Specifically, the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) on sinograms increase from 15.72 to 34.66 ( 0.001) and 0.6297 to 0.9834 ( 0.001), respectively, and on reconstructed images, reconstructed by maximum likelihood-expectation maximization (ML-EM), the PSNR and the SSIM improve from 21.95 to 33.14 ( 0.001) and 0.9084 to 0.9866 ( 0.001), respectively. We compared SCI-Net with existing methods, including baseline models, traditional reconstruction algorithms, end-to-end methods, sinogram restoration methods, and image post-processing methods. The experimental results and visual examples demonstrate that SCI-Net surpasses these existing methods in SPECT sinogram restoration. The clinical evaluation is conducted on clinical data of low-dose SPECT sinograms for spleen, thyroid, skull, and bone. These SPECT projection data are obtained from Discovery NM/CT670 scans. We compare the reconstructed images from the SCI-Net restored sinograms, the reconstructed images from the original low-dose sinograms, and the reconstructed images using the built-in algorithm of the Discovery NM/CT670. The results show that our method effectively reduces the coefficient of variation (COV) in the regions of interest (ROI) of the reconstructed images, thereby enhancing the quality of the reconstructed images through SPECT sinogram restoration.
Our proposed SCI-Net exhibits promising performance in the restoration of low-dose SPECT projection data. In the SCI-Net, we have implemented three mechanisms based on distinct forms, which are advantageous for the model to more effectively leverage the characteristics of sinograms and achieve commendable restoration outcomes.
用于低剂量成像的单光子发射计算机断层扫描(SPECT)正弦图恢复是医学成像中的一项关键挑战。现有方法常常忽略正弦图的特征,因此需要创新方法。
在本研究中,我们引入正弦图特征感知网络(SCI-Net)来解决低剂量SPECT正弦图的恢复问题。我们的目标是基于正弦图的特征构建并训练一个模型,这些特征包括连续性、周期性、正弦图中线的多尺度特性等,以增强模型对恢复过程的理解。
SCI-Net纳入了几种专门用于利用正弦图固有特征的新颖机制。我们实现了一个带有衰减机制的通道注意力模块,以利用相邻正弦图之间的连续性,同时一个位置注意力模块捕捉单个正弦图内的全局相关性。此外,我们提出了一种多阶段渐进集成机制来平衡局部细节和整体结构。针对正弦图图像特征定制的多个正则化项被嵌入到损失函数中用于模型训练。
实验评估分为两部分:模拟数据评估和临床评估。模拟数据评估是在一个由SIMIND蒙特卡罗程序从扩展心脏躯干(XCAT)解剖模型生成的包含十种器官类型的数据集上进行的。该数据集包括总共以低剂量SPECT正弦图作为输入数据、正常剂量作为真实数据的数据集,其中训练数据集中有3881个正弦图,测试集中有849个正弦图。当将低剂量正弦图的恢复与正常剂量参考进行比较时,SCI-Net有效地提高了性能。具体而言,正弦图上的峰值信噪比(PSNR)和结构相似性(SSIM)分别从15.72提高到34.66(P < 0.001)和从0.6297提高到0.9834(P < 0.001),并且在通过最大似然期望最大化(ML-EM)重建的图像上,PSNR和SSIM分别从21.95提高到33.14(P < 0.001)和从0.9084提高到0.9866(P < 0.001)。我们将SCI-Net与现有方法进行了比较,包括基线模型、传统重建算法、端到端方法、正弦图恢复方法和图像后处理方法。实验结果和可视化示例表明,SCI-Net在SPECT正弦图恢复方面优于这些现有方法。临床评估是在脾脏、甲状腺、颅骨和骨骼的低剂量SPECT正弦图的临床数据上进行的。这些SPECT投影数据是从Discovery NM/CT
670扫描中获得的。我们比较了SCI-Net恢复的正弦图重建的图像、原始低剂量正弦图重建的图像以及使用Discovery NM/CT 670的内置算法重建的图像。结果表明,我们的方法有效地降低了重建图像感兴趣区域(ROI)中的变异系数(COV),从而通过SPECT正弦图恢复提高了重建图像的质量。
我们提出的SCI-Net在低剂量SPECT投影数据的恢复方面表现出有前景的性能。在SCI-Net中,我们基于不同形式实现了三种机制,这有利于模型更有效地利用正弦图的特征并实现值得称赞的恢复结果。