Cui Jiaqi, Zeng Pinxian, Zeng Xinyi, Xu Yuanyuan, Wang Peng, Zhou Jiliu, Wang Yan, Shen Dinggang
IEEE Trans Med Imaging. 2024 Dec;43(12):4174-4189. doi: 10.1109/TMI.2024.3413832. Epub 2024 Dec 2.
To obtain high-quality positron emission tomography (PET) images while minimizing radiation exposure, numerous methods have been dedicated to acquiring standard-count PET (SPET) from low-count PET (LPET). However, current methods have failed to take full advantage of the different emphasized information from multiple domains, i.e., the sinogram, image, and frequency domains, resulting in the loss of crucial details. Meanwhile, they overlook the unique inner-structure of the sinograms, thereby failing to fully capture its structural characteristics and relationships. To alleviate these problems, in this paper, we proposed a prior knowledge-guided transformer-GAN that unites triple domains of sinogram, image, and frequency to directly reconstruct SPET images from LPET sinograms, namely PK-TriDo. Our PK-TriDo consists of a Sinogram Inner-Structure-based Denoising Transformer (SISD-Former) to denoise the input LPET sinogram, a Frequency-adapted Image Reconstruction Transformer (FaIR-Former) to reconstruct high-quality SPET images from the denoised sinograms guided by the image domain prior knowledge, and an Adversarial Network (AdvNet) to further enhance the reconstruction quality via adversarial training. Specifically tailored for the PET imaging mechanism, we injected a sinogram embedding module that partitions the sinograms by rows and columns to obtain 1D sequences of angles and distances to faithfully preserve the inner-structure of the sinograms. Moreover, to mitigate high-frequency distortions and enhance reconstruction details, we integrated global-local frequency parsers (GLFPs) into FaIR-Former to calibrate the distributions and proportions of different frequency bands, thus compelling the network to preserve high-frequency details. Evaluations on three datasets with different dose levels and imaging scenarios demonstrated that our PK-TriDo outperforms the state-of-the-art methods.
为了在将辐射暴露降至最低的同时获得高质量的正电子发射断层扫描(PET)图像,人们致力于采用多种方法从低计数PET(LPET)中获取标准计数PET(SPET)。然而,目前的方法未能充分利用来自多个域(即正弦图、图像和频域)的不同重点信息,导致关键细节丢失。同时,它们忽略了正弦图独特的内部结构,从而无法充分捕捉其结构特征和关系。为了缓解这些问题,在本文中,我们提出了一种先验知识引导的Transformer-GAN,它将正弦图、图像和频率的三个域结合起来,直接从LPET正弦图重建SPET图像,即PK-TriDo。我们的PK-TriDo由一个基于正弦图内部结构的去噪Transformer(SISD-Former)对输入的LPET正弦图进行去噪,一个频率自适应图像重建Transformer(FaIR-Former)在图像域先验知识的引导下从去噪后的正弦图重建高质量的SPET图像,以及一个对抗网络(AdvNet)通过对抗训练进一步提高重建质量。专门针对PET成像机制进行定制,我们注入了一个正弦图嵌入模块,该模块按行和列对正弦图进行划分,以获得角度和距离的一维序列,从而忠实地保留正弦图的内部结构。此外,为了减轻高频失真并增强重建细节,我们将全局-局部频率解析器(GLFP)集成到FaIR-Former中,以校准不同频段的分布和比例,从而迫使网络保留高频细节。在三个具有不同剂量水平和成像场景的数据集上的评估表明,我们的PK-TriDo优于现有方法。