Suppr超能文献

用于检测阿尔茨海默病的混合多模态机器学习模型。

A hybrid multimodal machine learning model for Detecting Alzheimer's disease.

机构信息

School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China.

School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China; School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, Zhejiang, 325035, China.

出版信息

Comput Biol Med. 2024 Mar;170:108035. doi: 10.1016/j.compbiomed.2024.108035. Epub 2024 Feb 3.

Abstract

Alzheimer's disease (AD) diagnosis utilizing single modality neuroimaging data has limitations. Multimodal fusion of complementary biomarkers may improve diagnostic performance. This study proposes a multimodal machine learning framework integrating magnetic resonance imaging (MRI), positron emission tomography (PET) and cerebrospinal fluid (CSF) assays for enhanced AD characterization. The model incorporates a hybrid algorithm combining enhanced Harris Hawks Optimization (HHO) algorithm referred to as ILHHO, with Kernel Extreme Learning Machine (KELM) classifier for simultaneous feature selection and classification. ILHHO enhances HHO's search efficiency by integrating iterative mapping (IM) to improve population diversity and local escaping operator (LEO) to balance exploration-exploitation. Comparative analysis with other improved HHO algorithms, classic meta-heuristic algorithms (MHAs), and state-of-the-art MHAs on IEEE CEC2014 benchmark functions indicates that ILHHO achieves superior optimization performance compared to other comparative algorithms. The synergistic ILHHO-KELM model is evaluated on 202 AD Neuroimaging Initiative (ADNI) subjects. Results demonstrate superior multimodal classification accuracy over single modalities, validating the importance of fusing heterogeneous biomarkers. MRI + PET + CSF achieves 99.2 % accuracy for AD vs. normal control (NC), outperforming conventional and proposed methods. Discriminative feature analysis provides further insights into differential AD-related neurodegeneration patterns detected by MRI and PET. The differential PET and MRI features demonstrate how the two modalities provide complementary biomarkers. The neuroanatomical relevance of selected features supports ILHHO-KELM's potential for extracting sensitive AD imaging signatures. Overall, the study showcases the advantages of capitalizing on complementary multimodal data through advanced feature learning techniques for improving AD diagnosis.

摘要

阿尔茨海默病(AD)利用单一模式神经影像学数据进行诊断存在局限性。互补生物标志物的多模态融合可能会提高诊断性能。本研究提出了一种多模态机器学习框架,该框架整合了磁共振成像(MRI)、正电子发射断层扫描(PET)和脑脊液(CSF)检测,以增强 AD 的特征描述。该模型采用了一种混合算法,将改进的哈里斯鹰优化(HHO)算法(称为 ILHHO)与核极端学习机(KELM)分类器相结合,用于同时进行特征选择和分类。ILHHO 通过集成迭代映射(IM)来提高种群多样性和局部逃逸算子(LEO)来平衡探索-开发,从而增强了 HHO 的搜索效率。与其他改进的 HHO 算法、经典元启发式算法(MHAs)和 IEEE CEC2014 基准函数上的最新 MHAs 进行的比较分析表明,ILHHO 与其他比较算法相比,具有更优的优化性能。协同的 ILHHO-KELM 模型在 202 名 AD 神经影像学倡议(ADNI)受试者上进行了评估。结果表明,与单一模态相比,多模态分类精度更高,验证了融合异质生物标志物的重要性。MRI+PET+CSF 对 AD 与正常对照组(NC)的准确率达到 99.2%,优于传统方法和提出的方法。鉴别特征分析进一步深入了解了 MRI 和 PET 检测到的 AD 相关神经退行性变模式的差异。两种模态提供的互补生物标志物说明了差异 PET 和 MRI 特征。所选特征的神经解剖学相关性支持 ILHHO-KELM 从 AD 成像特征中提取敏感特征的潜力。总体而言,本研究展示了通过先进的特征学习技术利用互补多模态数据的优势,从而提高 AD 诊断的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验