Paduvilan Arjun Kidavunil, Livingston Godlin Atlas Lawrence, Kuppuchamy Sampath Kumar, Dhanaraj Rajesh Kumar, Subramanian Muthuvel, Al-Rasheed Amal, Getahun Masresha, Soufiene Ben Othman
Department of Computer Science and Engineering, GITAM University, Bengaluru, Karnataka, India.
Department of Computer Science and Engineering, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India.
BMC Med Inform Decis Mak. 2025 Jul 1;25(1):219. doi: 10.1186/s12911-025-03073-w.
Alzheimer's Disease (AD) poses a significant global health challenge, necessitating early and accurate diagnosis to enable timely interventions. AD is a progressive neurodegenerative disorder that affects millions worldwide and is one of the leading causes of cognitive impairment in older adults. Early diagnosis is critical for enabling effective treatment strategies, slowing disease progression, and improving the quality of life for patients. Existing diagnostic methods often struggle with limited sensitivity, overfitting, and reduced reliability due to inadequate feature extraction, imbalanced datasets, and suboptimal model architectures. This study addresses these gaps by introducing an innovative methodology that combines SVM with Deep Learning (DL) to improve the classification performance of AD. Deep learning models extract high-level imaging features which are then concatenated with SVM kernels in a late-fusion ensemble. This hybrid design leverages deep representations for pattern recognition and SVM's robustness on small sample sets. This study provides a necessary tool for early-stage identification of possible cases, so enhancing the management and treatment options. This is attained by precisely classifying the disease from neuroimaging data. The approach integrates advanced data pre-processing, dynamic feature optimization, and attention-driven learning mechanisms to enhance interpretability and robustness. The research leverages a dataset of MRI and PET imaging, integrating novel fusion techniques to extract key biomarkers indicative of cognitive decline. Unlike prior approaches, this method effectively mitigates the challenges of data sparsity and dimensionality reduction while improving generalization across diverse datasets. Comparative analysis highlights a 15% improvement in accuracy, a 12% reduction in false positives, and a 10% increase in F1-score against state-of-the-art models such as HNC and MFNNC. The proposed method significantly outperforms existing techniques across metrics like accuracy, sensitivity, specificity, and computational efficiency, achieving an overall accuracy of 98.5%.
阿尔茨海默病(AD)是一项重大的全球健康挑战,需要早期准确诊断以便及时进行干预。AD是一种进行性神经退行性疾病,影响着全球数百万人,是老年人认知障碍的主要原因之一。早期诊断对于制定有效的治疗策略、减缓疾病进展以及提高患者生活质量至关重要。由于特征提取不足、数据集不平衡和模型架构欠佳,现有的诊断方法常常存在灵敏度有限、过拟合和可靠性降低等问题。本研究通过引入一种将支持向量机(SVM)与深度学习(DL)相结合的创新方法来解决这些差距,以提高AD的分类性能。深度学习模型提取高级成像特征,然后在后期融合集成中将其与SVM核连接起来。这种混合设计利用深度表示进行模式识别以及SVM在小样本集上的稳健性。本研究为早期识别可能的病例提供了必要工具,从而增加管理和治疗选择。这是通过从神经影像数据中精确分类疾病来实现的。该方法集成了先进的数据预处理、动态特征优化和注意力驱动的学习机制,以提高可解释性和稳健性。该研究利用了一个包含磁共振成像(MRI)和正电子发射断层扫描(PET)成像的数据集,整合了新颖的融合技术以提取指示认知衰退的关键生物标志物。与先前的方法不同,该方法有效缓解了数据稀疏性和降维的挑战,同时提高了在不同数据集上的泛化能力。对比分析表明,与诸如HNC和MFNNC等现有先进模型相比,准确率提高了15%,误报率降低了12%,F1分数提高了10%。所提出的方法在准确率、灵敏度、特异性和计算效率等指标上显著优于现有技术,总体准确率达到98.5%。
BMC Med Inform Decis Mak. 2025-7-1
J Prev Alzheimers Dis. 2025-5
Front Med (Lausanne). 2025-6-17
Comput Methods Programs Biomed. 2025-6-21
Diagnostics (Basel). 2024-6-17