Suppr超能文献

校准低成本电容式土壤水分传感器对 AquaCrop 模型性能的影响。

Impact of calibrating a low-cost capacitance-based soil moisture sensor on AquaCrop model performance.

机构信息

Chair of Hydrology and River Basin Management, Technical University of Munich, Arcisstrasse 21, 80333, Munich, Germany.

Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.

出版信息

J Environ Manage. 2024 Feb 27;353:120248. doi: 10.1016/j.jenvman.2024.120248. Epub 2024 Feb 6.

Abstract

Sensor data and agro-hydrological modeling have been combined to improve irrigation management. Crop water models simulating crop growth and production in response to the soil-water environment need to be parsimonious in terms of structure, inputs and parameters to be applied in data scarce regions. Irrigation management using soil moisture sensors requires them to be site-calibrated, low-cost, and maintainable. Therefore, there is a need for parsimonious crop modeling combined with low-cost soil moisture sensing without losing predictive capability. This study calibrated the low-cost capacitance-based Spectrum Inc. SM100 soil moisture sensor using multiple least squares and machine learning models, with both laboratory and field data. The best calibration technique, field-based piece-wise linear regression (calibration r = 0.76, RMSE = 3.13 %, validation r = 0.67, RMSE = 4.57 %), was used to study the effect of sensor calibration on the performance of the FAO AquaCrop Open Source (AquaCrop-OS) model by calibrating its soil hydraulic parameters. This approach was tested during the wheat cropping season in 2018, in Kanpur (India), in the Indo-Gangetic plains, resulting in some best practices regarding sensor calibration being recommended. The soil moisture sensor was calibrated best in field conditions against a secondary standard sensor (UGT GmbH. SMT100) taken as a reference (r = 0.67, RMSE = 4.57 %), followed by laboratory calibration against gravimetric soil moisture using the dry-down (r = 0.66, RMSE = 5.26 %) and wet-up curves respectively (r = 0.62, RMSE = 6.29 %). Moreover, model overfitting with machine learning algorithms led to poor field validation performance. The soil moisture simulation of AquaCrop-OS improved significantly by incorporating raw reference sensor and calibrated low-cost sensor data. There were non-significant impacts on biomass simulation, but water productivity improved significantly. Notably, using raw low-cost sensor data to calibrate AquaCrop led to poorer performances than using the literature. Hence using literature values could save sensor costs without compromising model performance if sensor calibration was not possible. The results suggest the essentiality of calibrating low-cost soil moisture sensors for crop modeling calibration to improve crop water productivity.

摘要

传感器数据和农业水文学模型已被结合用于改进灌溉管理。模拟作物生长和产量对土壤-水环境响应的作物水分模型需要在结构、输入和参数方面进行简化,以便在数据稀缺地区应用。使用土壤湿度传感器进行灌溉管理需要对其进行现场校准、低成本和可维护。因此,需要将简化的作物模型与低成本土壤湿度感测相结合,而不会降低预测能力。本研究使用多元最小二乘法和机器学习模型对低成本电容式 Spectrum Inc. SM100 土壤湿度传感器进行了校准,校准数据包括实验室和田间数据。使用最佳的校准技术——基于现场的分段线性回归(校准 r = 0.76,RMSE = 3.13%,验证 r = 0.67,RMSE = 4.57%),对 FAO AquaCrop Open Source(AquaCrop-OS)模型的土壤水力参数进行校准,以研究传感器校准对模型性能的影响。该方法在 2018 年印度坎普尔(印度)的印度-恒河平原的冬小麦种植季节进行了测试,提出了一些有关传感器校准的最佳实践建议。在田间条件下,该土壤湿度传感器与二级标准传感器(UGT GmbH. SMT100)校准效果最佳(r = 0.67,RMSE = 4.57%),其次是实验室校准,使用干-湿曲线(r = 0.66,RMSE = 5.26%)和湿-湿曲线(r = 0.62,RMSE = 6.29%)对土壤重量含水量进行校准。此外,机器学习算法的模型过度拟合导致田间验证性能不佳。通过结合原始参考传感器和校准后的低成本传感器数据,AquaCrop-OS 的土壤湿度模拟得到了显著改善。对生物量模拟没有显著影响,但水分生产率显著提高。值得注意的是,使用原始低成本传感器数据来校准 AquaCrop 比使用文献值的效果更差。因此,如果无法进行传感器校准,则使用文献值可以节省传感器成本,而不会影响模型性能。结果表明,对作物模型校准而言,校准低成本土壤湿度传感器对于提高作物水分生产力至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验