Suppr超能文献

工程化哺乳动物细胞生长动力学用于生物制造。

Engineering mammalian cell growth dynamics for biomanufacturing.

机构信息

Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK.

Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK.

出版信息

Metab Eng. 2024 Mar;82:89-99. doi: 10.1016/j.ymben.2024.01.006. Epub 2024 Feb 6.

Abstract

Precise control over mammalian cell growth dynamics poses a major challenge in biopharmaceutical manufacturing. Here, we present a multi-level cell engineering strategy for the tunable regulation of growth phases in mammalian cells. Initially, we engineered mammalian death phase by employing CRISPR/Cas9 to knockout pro-apoptotic proteins Bax and Bak, resulting in a substantial attenuation of apoptosis by improving cell viability and extending culture lifespan. The second phase introduced a growth acceleration system, akin to a "gas pedal", based on an abscidic acid inducible system regulating cMYC gene expression, enabling rapid cell density increase and cell cycle control. The third phase focused on a stationary phase inducing system, comparable to a "brake pedal". A tetracycline inducible genetic circuit based on BLIMP1 gene led to cell growth cessation and arrested cell cycle upon activation. Finally, we developed a dual controllable system, combining the "gas and brake pedals", enabling for dynamic and precise orchestration of mammalian cell growth dynamics. This work exemplifies the application of synthetic biology tools and combinatorial cell engineering, offering a sophisticated framework for manipulating mammalian cell growth and providing a unique paradigm for reprogramming cell behaviour for enhancing biopharmaceutical manufacturing and further biomedical applications.

摘要

精确控制哺乳动物细胞的生长动态是生物制药生产中的一个主要挑战。在这里,我们提出了一种多层次的细胞工程策略,用于可调节地调控哺乳动物细胞的生长阶段。首先,我们通过使用 CRISPR/Cas9 工程化哺乳动物的死亡阶段,敲除促凋亡蛋白 Bax 和 Bak,从而提高细胞活力并延长培养寿命,显著减弱细胞凋亡。第二阶段引入了一种类似于“油门”的生长加速系统,基于一种脱落酸诱导的系统来调节 cMYC 基因的表达,从而实现快速的细胞密度增加和细胞周期控制。第三阶段专注于引入一个静止期诱导系统,类似于“刹车踏板”。基于 BLIMP1 基因的四环素诱导遗传回路导致细胞生长停止,并在激活时使细胞周期停滞。最后,我们开发了一个双可控系统,结合了“油门和刹车踏板”,能够动态和精确地协调哺乳动物细胞的生长动态。这项工作展示了合成生物学工具和组合细胞工程的应用,为操纵哺乳动物细胞的生长提供了一个复杂的框架,并为重新编程细胞行为提供了一个独特的范例,以增强生物制药生产和进一步的生物医学应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验