Suppr超能文献

基于蛋白质-蛋白质相互作用网络的 GWAS 和功能数据整合用于血压调节分析。

Protein-protein interaction network-based integration of GWAS and functional data for blood pressure regulation analysis.

机构信息

Department of General Biology, School of Medicine, University of Patras, Patras, Greece.

Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece.

出版信息

Hum Genomics. 2024 Feb 8;18(1):15. doi: 10.1186/s40246-023-00565-6.

Abstract

BACKGROUND

It is valuable to analyze the genome-wide association studies (GWAS) data for a complex disease phenotype in the context of the protein-protein interaction (PPI) network, as the related pathophysiology results from the function of interacting polyprotein pathways. The analysis may include the design and curation of a phenotype-specific GWAS meta-database incorporating genotypic and eQTL data linking to PPI and other biological datasets, and the development of systematic workflows for PPI network-based data integration toward protein and pathway prioritization. Here, we pursued this analysis for blood pressure (BP) regulation.

METHODS

The relational scheme of the implemented in Microsoft SQL Server BP-GWAS meta-database enabled the combined storage of: GWAS data and attributes mined from GWAS Catalog and the literature, Ensembl-defined SNP-transcript associations, and GTEx eQTL data. The BP-protein interactome was reconstructed from the PICKLE PPI meta-database, extending the GWAS-deduced network with the shortest paths connecting all GWAS-proteins into one component. The shortest-path intermediates were considered as BP-related. For protein prioritization, we combined a new integrated GWAS-based scoring scheme with two network-based criteria: one considering the protein role in the reconstructed by shortest-path (RbSP) interactome and one novel promoting the common neighbors of GWAS-prioritized proteins. Prioritized proteins were ranked by the number of satisfied criteria.

RESULTS

The meta-database includes 6687 variants linked with 1167 BP-associated protein-coding genes. The GWAS-deduced PPI network includes 1065 proteins, with 672 forming a connected component. The RbSP interactome contains 1443 additional, network-deduced proteins and indicated that essentially all BP-GWAS proteins are at most second neighbors. The prioritized BP-protein set was derived from the union of the most BP-significant by any of the GWAS-based or the network-based criteria. It included 335 proteins, with ~ 2/3 deduced from the BP PPI network extension and 126 prioritized by at least two criteria. ESR1 was the only protein satisfying all three criteria, followed in the top-10 by INSR, PTN11, CDK6, CSK, NOS3, SH2B3, ATP2B1, FES and FINC, satisfying two. Pathway analysis of the RbSP interactome revealed numerous bioprocesses, which are indeed functionally supported as BP-associated, extending our understanding about BP regulation.

CONCLUSIONS

The implemented workflow could be used for other multifactorial diseases.

摘要

背景

在蛋白质-蛋白质相互作用(PPI)网络的背景下分析复杂疾病表型的全基因组关联研究(GWAS)数据是有价值的,因为相关的病理生理学结果来自相互作用的多蛋白途径的功能。该分析可能包括设计和管理一个特定于表型的 GWAS 元数据库,该数据库结合了基因型和 eQTL 数据,与 PPI 和其他生物数据集相关联,并开发系统的 PPI 网络数据集成工作流程,以实现蛋白质和途径的优先级排序。在这里,我们针对血压(BP)调节进行了此项分析。

方法

在 Microsoft SQL Server 中实现的 BP-GWAS 元数据库的关系方案使 GWAS 数据和从 GWAS Catalog 和文献中挖掘的属性、Ensembl 定义的 SNP-转录本关联以及 GTEx eQTL 数据能够联合存储。从 PICKLE PPI 元数据库中重建了 BP 蛋白互作组,通过将连接所有 GWAS-蛋白的最短路径扩展到一个组件中,扩展了 GWAS 推断的网络。最短路径中间物被认为与 BP 相关。为了进行蛋白质优先级排序,我们结合了一种新的基于综合 GWAS 的评分方案和两个基于网络的标准:一个考虑在最短路径(RbSP)互作组中重建的蛋白质的作用,另一个新的标准促进 GWAS 优先化蛋白质的共同邻居。根据满足标准的数量对优先化的蛋白质进行排序。

结果

元数据库包括 6687 个与 1167 个与 BP 相关的蛋白编码基因相关联的变体。GWAS 推断的 PPI 网络包含 1065 种蛋白质,其中 672 种形成一个连通组件。RbSP 互作组包含 1443 个额外的、网络推断的蛋白质,并表明基本上所有的 BP-GWAS 蛋白质最多都是第二邻居。优先化的 BP-蛋白集源自任何基于 GWAS 或基于网络的标准中最具 BP 意义的标准的并集。它包含 335 种蛋白质,其中约 2/3 是从 BP PPI 网络扩展中推断出来的,有 126 种是通过至少两个标准优先化的。ESR1 是唯一满足所有三个标准的蛋白质,其次是 INSR、PTN11、CDK6、CSK、NOS3、SH2B3、ATP2B1、FES 和 FINC,满足两个标准。对 RbSP 互作组的途径分析揭示了许多生物过程,这些过程确实与 BP 相关,这扩展了我们对 BP 调节的理解。

结论

实施的工作流程可用于其他多因素疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/11465932/72b6f34ade34/40246_2023_565_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验