Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany.
Achucarro Basque Center for Neuroscience, Leioa, Spain.
Eur J Neurosci. 2024 Apr;59(7):1723-1742. doi: 10.1111/ejn.16270. Epub 2024 Feb 7.
The circadian clock orchestrates many physiological and behavioural rhythms in mammals with 24-h periodicity, through a hierarchical organisation, with the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus. The circuits of the SCN generate circadian rhythms with precision, relying on intrinsic coupling mechanisms, for example, neurotransmitters like arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), neuronal gamma-aminobutyric acid (GABA) signalling and astrocytes connected by gap junctions composed of connexins (Cx). In female rodents, the presence of estrogen receptors (ERs) in the dorsal SCN suggests an influence of estrogen (E2) on the circuit timekeeping that could regulate circadian rhythm and coupling. To investigate this, we used SCN explants together with hypothalamic neurons and astrocytes. First, we showed that E2 stabilised the circadian amplitude in the SCN when rAVPs (receptor-associated vasopressin peptides) were inhibited. However, the phase delay induced by VIPAC2 (VIP receptors) inhibition remained unaffected by E2. We then showed that E2 exerted its effects in the SCN via ERβ (estrogen receptor beta), resulting in increased expression of Cx36 and Cx43. Notably, specific inhibition of both connexins resulted in a significant reduction in circadian amplitude within the SCN. Remarkably, E2 restored the period with inhibited Cx36 but not with Cx43 inhibition. This implies that the network between astrocytes and neurons, responsible for coupling in the SCN, can be reinforced through E2. In conclusion, these findings provide new insights into how E2 regulates circadian rhythms ex vivo in an ERβ-dependent manner, underscoring its crucial role in fortifying the SCN's rhythm.
生物钟通过分层组织,以位于下丘脑视交叉上核(SCN)的中央时钟为核心,协调哺乳动物的许多具有 24 小时周期性的生理和行为节律。SCN 的回路通过内在耦合机制产生精确的昼夜节律,例如,神经递质如精氨酸加压素(AVP)、血管活性肠肽(VIP)、神经元γ-氨基丁酸(GABA)信号和通过缝隙连接(Connexin,Cx)连接的星形胶质细胞。在雌性啮齿动物中,SCN 背侧存在雌激素受体(ER)表明雌激素(E2)对电路计时的影响,可能调节昼夜节律和耦合。为了研究这一点,我们使用 SCN 外植体以及下丘脑神经元和星形胶质细胞。首先,我们表明,当抑制 rAVP(受体相关加压素肽)时,E2 稳定了 SCN 的昼夜节律幅度。然而,VIPAC2(VIP 受体)抑制引起的相位延迟不受 E2 影响。然后,我们表明 E2 通过 ERβ(雌激素受体β)在 SCN 中发挥作用,导致 Cx36 和 Cx43 的表达增加。值得注意的是,特异性抑制两种连接蛋白都导致 SCN 中的昼夜节律幅度显著降低。值得注意的是,E2 恢复了受抑制的 Cx36 但不受 Cx43 抑制的周期。这意味着负责 SCN 耦合的星形胶质细胞和神经元之间的网络可以通过 E2 得到加强。总之,这些发现提供了新的见解,即 E2 如何以 ERβ 依赖的方式在体外调节昼夜节律,强调了其在加强 SCN 节律方面的关键作用。