Suppr超能文献

利用量子力学/分子力学方法解析老黄色酶对C=N键的非常规还原作用

Deciphering the Unconventional Reduction of C=N Bonds by Old Yellow Enzymes Using QM/MM.

作者信息

Sahrawat Amit Singh, Polidori Nakia, Kroutil Wolfgang, Gruber Karl

机构信息

Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.

Institute of Chemistry, University of Graz, Graz 8010, Austria.

出版信息

ACS Catal. 2024 Jan 10;14(3):1257-1266. doi: 10.1021/acscatal.3c04362. eCollection 2024 Feb 2.

Abstract

The reduction of C=X (X = N, O) bonds is a cornerstone in both synthetic organic chemistry and biocatalysis. Conventional reduction mechanisms usually involve a hydride ion targeting the less electronegative carbon atom. In a departure from this paradigm, our investigation into Old Yellow Enzymes (OYEs) reveals a mechanism involving transfer of hydride to the formally more electronegative nitrogen atom within a C=N bond. Beyond their known ability to reduce electronically activated C=C double bonds, e.g., in α, β-unsaturated ketones, these enzymes have recently been shown to reduce α-oximo-β-ketoesters to the corresponding amines. It has been proposed that this transformation involves two successive reduction steps and proceeds via imine intermediates formed by the reductive dehydration of the oxime moieties. We employ advanced quantum mechanics/molecular mechanics (QM/MM) simulations, enriched by a two-tiered approach incorporating QM/MM (UB3LYP-6-31G*/OPLS2005) geometry optimization, QM/MM (B3LYP-6-31G*/amberff19sb) steered molecular dynamics simulations, and detailed natural-bond-orbital analyses to decipher the unconventional hydride transfer to nitrogen in both reduction steps and to delineate the role of active site residues as well as of substituents present in the substrates. Our computational results confirm the proposed mechanism and agree well with experimental mutagenesis and enzyme kinetics data. According to our model, the catalysis of OYE involves hydride transfer from the flavin cofactor to the nitrogen atom in oximoketoesters as well as iminoketoesters followed by protonation at the adjacent oxygen or carbon atoms by conserved tyrosine residues and active site water molecules. Two histidine residues play a key role in the polarization and activation of the C=N bond, and conformational changes of the substrate observed along the reaction coordinate underline the crucial importance of dynamic electron delocalization for efficient catalysis.

摘要

碳=X(X = N、O)键的还原是合成有机化学和生物催化中的基石。传统的还原机制通常涉及氢负离子靶向电负性较小的碳原子。与这种范式不同,我们对老黄色酶(OYEs)的研究揭示了一种机制,该机制涉及氢负离子转移至C=N键内形式上电负性更大的氮原子。除了其已知的还原电子活化的C=C双键的能力,例如在α,β-不饱和酮中,这些酶最近已被证明可将α-肟基-β-酮酯还原为相应的胺。有人提出,这种转化涉及两个连续的还原步骤,并通过肟部分的还原脱水形成的亚胺中间体进行。我们采用先进的量子力学/分子力学(QM/MM)模拟,通过结合QM/MM(UB3LYP-6-31G*/OPLS2005)几何优化、QM/MM(B3LYP-6-31G*/amberff19sb)引导分子动力学模拟和详细的自然键轨道分析的两层方法进行强化,以解读两个还原步骤中向氮的非常规氢负离子转移,并描绘活性位点残基以及底物中存在的取代基的作用。我们的计算结果证实了所提出的机制,并与实验诱变和酶动力学数据高度吻合。根据我们的模型,OYE的催化作用涉及从黄素辅因子向肟基酮酯以及亚胺基酮酯中的氮原子转移氢负离子,随后由保守的酪氨酸残基和活性位点水分子在相邻的氧或碳原子处进行质子化。两个组氨酸残基在C=N键的极化和活化中起关键作用,并且沿反应坐标观察到的底物构象变化突显了动态电子离域对高效催化的至关重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0601/10845114/1950a52da41d/cs3c04362_0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验