Suppr超能文献

表达来自非常规酵母的 Old Yellow Enzymes 的重组 S. cerevisiae:一种用于选择性还原活化烯烃的简单系统。

Recombinant S. cerevisiae expressing Old Yellow Enzymes from non-conventional yeasts: an easy system for selective reduction of activated alkenes.

机构信息

Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via G, Campi 183, 41125 Modena, Italy.

出版信息

Microb Cell Fact. 2014 Apr 25;13:60. doi: 10.1186/1475-2859-13-60.

Abstract

BACKGROUND

Old Yellow Enzymes (OYEs) are flavin-dependent enoate reductases (EC 1.6.99.1) that catalyze the stereoselective hydrogenation of electron-poor alkenes. Their ability to generate up to two stereocenters by the trans-hydrogenation of the C = C double bond is highly demanded in asymmetric synthesis. Isolated redox enzymes utilization require the addition of cofactors and systems for their regeneration. Microbial whole-cells may represent a valid alternative combining desired enzymatic activity and efficient cofactor regeneration. Considerable efforts were addressed at developing novel whole-cell OYE biocatalysts, based on recombinant Saccharomyces cerevisiae expressing OYE genes.

RESULTS

Recombinant S. cerevisiae BY4741∆Oye2 strains, lacking endogenous OYE and expressing nine separate OYE genes from non-conventional yeasts, were used as whole-cell biocatalysts to reduce substrates with an electron-poor double bond activated by different electron-withdrawing groups. Ketoisophorone, α-methyl-trans-cinnamaldehyde, and trans-β-methyl-β-nitrostyrene were successfully reduced with high rates and selectivity. A series of four alkyl-substituted cyclohex-2-enones was tested to check the versatility and efficiency of the biocatalysts. Reduction of double bond occurred with high rates and enantioselectivity, except for 3,5,5-trimethyl-2-cyclohexenone. DFT (density functional theory) computational studies were performed to investigate whether the steric hindrance and/or the electronic properties of the substrates were crucial for reactivity. The three-dimensional structure of enoate reductases from Kluyveromyces lodderae and Candida castellii, predicted through comparative modeling, resulted similar to that of S. cerevisiae OYE2 and revealed the key role of Trp116 both in substrate specificity and stereocontrol. All the modeling studies indicate that steric hindrance was a major determinant in the enzyme reactivity.

CONCLUSIONS

The OYE biocatalysts, based on recombinant S. cerevisiae expressing OYE genes from non-conventional yeasts, were able to differently reduce the activated double bond of enones, enals and nitro-olefins, exhibiting a wide range of substrate specificity. Moreover whole-cells biocatalysts bypassed the necessity of the cofactor recycling and, tuning reaction parameters, allowed the synthetic exploitation of endogenous carbonyl reductases. Molecular modeling studies highlighted key structural features for further improvement of catalytic properties of OYE enzymes.

摘要

背景

老黄酶(OYE)是依赖黄素的烯酸还原酶(EC 1.6.99.1),可催化缺电子烯烃的立体选择性氢化。其通过 C = C 双键的反式氢化生成两个立体中心的能力在不对称合成中需求量很大。分离的氧化还原酶的利用需要添加辅因子和用于其再生的系统。微生物全细胞可能是一种有效的替代方法,结合所需的酶活性和有效的辅因子再生。人们做出了相当大的努力来开发基于表达 OYE 基因的重组酿酒酵母的新型全细胞 OYE 生物催化剂。

结果

缺乏内源 OYE 并表达来自非传统酵母的九种不同 OYE 基因的重组酿酒酵母 BY4741 ∆Oye2 菌株被用作全细胞生物催化剂,以还原由不同吸电子基团激活的具有缺电子双键的底物。酮异佛尔酮、α-甲基-反式肉桂醛和反式-β-甲基-β-硝基苯乙烯均以高收率和选择性成功还原。测试了一系列四个烷基取代的环己-2-烯酮,以检查生物催化剂的多功能性和效率。除 3,5,5-三甲基-2-环己烯酮外,双键的还原均以高收率和对映选择性发生。通过密度泛函理论(DFT)计算研究来研究底物的空间位阻和/或电子性质是否对反应性至关重要。通过比较建模预测了 Kluyveromyces lodderae 和 Candida castellii 的烯酸还原酶的三维结构,结果与酿酒酵母 OYE2 的结构相似,并揭示了色氨酸 116 在底物特异性和立体控制中的关键作用。所有建模研究表明,空间位阻是决定酶反应性的主要因素。

结论

基于表达非传统酵母 OYE 基因的重组酿酒酵母的 OYE 生物催化剂能够以不同的方式还原烯酮、烯醛和硝基烯烃的活化双键,表现出广泛的底物特异性。此外,全细胞生物催化剂绕过了辅因子循环再生的必要性,并通过调整反应参数,允许对内源羰基还原酶进行合成利用。分子建模研究突出了关键的结构特征,可进一步改善 OYE 酶的催化性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbc1/4013436/62d972d023d9/1475-2859-13-60-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验