Suppr超能文献

HLD-DDoSDN:基于高低速率数据集的针对 SDN 的 DDoS 攻击。

HLD-DDoSDN: High and low-rates dataset-based DDoS attacks against SDN.

机构信息

National Advanced IPv6 (NAv6) Centre, Universiti Sains Malaysia, Gelugor, Penang, Malaysia.

School of Computing, Skyline University College, University City of Sharjah, Sharjah, United Arab Emirates.

出版信息

PLoS One. 2024 Feb 8;19(2):e0297548. doi: 10.1371/journal.pone.0297548. eCollection 2024.

Abstract

Software Defined Network (SDN) has alleviated traditional network limitations but faces a significant challenge due to the risk of Distributed Denial of Service (DDoS) attacks against an SDN controller, with current detection methods lacking evaluation on unrealistic SDN datasets and standard DDoS attacks (i.e., high-rate DDoS attack). Therefore, a realistic dataset called HLD-DDoSDN is introduced, encompassing prevalent DDoS attacks specifically aimed at an SDN controller, such as User Internet Control Message Protocol (ICMP), Transmission Control Protocol (TCP), and User Datagram Protocol (UDP). This SDN dataset also incorporates diverse levels of traffic fluctuations, representing different traffic variation rates (i.e., high and low rates) in DDoS attacks. It is qualitatively compared to existing SDN datasets and quantitatively evaluated across all eight scenarios to ensure its superiority. Furthermore, it fulfils the requirements of a benchmark dataset in terms of size, variety of attacks and scenarios, with significant features that highly contribute to detecting realistic SDN attacks. The features of HLD-DDoSDN are evaluated using a Deep Multilayer Perception (D-MLP) based detection approach. Experimental findings indicate that the employed features exhibit high performance in the detection accuracy, recall, and precision of detecting high and low-rate DDoS flooding attacks.

摘要

软件定义网络 (SDN) 缓解了传统网络的局限性,但由于针对 SDN 控制器的分布式拒绝服务 (DDoS) 攻击的风险,它面临着重大挑战,当前的检测方法在不切实际的 SDN 数据集和标准 DDoS 攻击(即高速率 DDoS 攻击)上缺乏评估。因此,引入了一个名为 HLD-DDoSDN 的现实数据集,其中包含专门针对 SDN 控制器的流行 DDoS 攻击,例如用户互联网控制消息协议 (ICMP)、传输控制协议 (TCP) 和用户数据报协议 (UDP)。这个 SDN 数据集还包含不同程度的流量波动,代表了 DDoS 攻击中的不同流量变化率(即高速率和低速率)。它与现有的 SDN 数据集进行了定性比较,并在所有八个场景中进行了定量评估,以确保其优越性。此外,它在大小、攻击和场景的多样性方面满足基准数据集的要求,具有高度有助于检测现实 SDN 攻击的显著特征。HLD-DDoSDN 的特征使用基于深度多层感知机 (D-MLP) 的检测方法进行评估。实验结果表明,所采用的特征在检测高速率和低速率 DDoS 泛洪攻击的检测精度、召回率和精度方面表现出了很高的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b196/10852331/fc4613c33f6f/pone.0297548.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验