Suppr超能文献

软件定义网络中基于机器学习和深度学习的 DDoS 攻击检测方法的系统文献综述

A Systematic Literature Review on Machine Learning and Deep Learning Approaches for Detecting DDoS Attacks in Software-Defined Networking.

机构信息

National Advanced IPv6 Centre (NAv6), Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia.

Cybersecurity Department, School of Information Technology, American University of Madaba (AUM), Amman 11821, Jordan.

出版信息

Sensors (Basel). 2023 May 1;23(9):4441. doi: 10.3390/s23094441.

Abstract

Software-defined networking (SDN) is a revolutionary innovation in network technology with many desirable features, including flexibility and manageability. Despite those advantages, SDN is vulnerable to distributed denial of service (DDoS), which constitutes a significant threat due to its impact on the SDN network. Despite many security approaches to detect DDoS attacks, it remains an open research challenge. Therefore, this study presents a systematic literature review (SLR) to systematically investigate and critically analyze the existing DDoS attack approaches based on machine learning (ML), deep learning (DL), or hybrid approaches published between 2014 and 2022. We followed a predefined SLR protocol in two stages on eight online databases to comprehensively cover relevant studies. The two stages involve automatic and manual searching, resulting in 70 studies being identified as definitive primary studies. The trend indicates that the number of studies on SDN DDoS attacks has increased dramatically in the last few years. The analysis showed that the existing detection approaches primarily utilize ensemble, hybrid, and single ML-DL. Private synthetic datasets, followed by unrealistic datasets, are the most frequently used to evaluate those approaches. In addition, the review argues that the limited literature studies demand additional focus on resolving the remaining challenges and open issues stated in this SLR.

摘要

软件定义网络 (SDN) 是网络技术的一项革命性创新,具有许多理想的特性,包括灵活性和可管理性。尽管具有这些优势,但 SDN 容易受到分布式拒绝服务 (DDoS) 的攻击,由于其对 SDN 网络的影响,DDoS 攻击构成了重大威胁。尽管有许多安全方法可以检测 DDoS 攻击,但它仍然是一个开放的研究挑战。因此,本研究进行了系统的文献回顾 (SLR),以系统地调查和批判性分析基于机器学习 (ML)、深度学习 (DL) 或混合方法的现有 DDoS 攻击方法,这些方法发表于 2014 年至 2022 年之间。我们按照预定的 SLR 协议,在八个在线数据库上进行了两个阶段的搜索,以全面涵盖相关研究。这两个阶段包括自动和手动搜索,共确定了 70 项明确的主要研究。趋势表明,近年来,关于 SDN DDoS 攻击的研究数量急剧增加。分析表明,现有的检测方法主要使用集成、混合和单 ML-DL。私人合成数据集,其次是不切实际的数据集,是最常用于评估这些方法的数据集。此外,该评论认为,有限的文献研究需要进一步关注解决本 SLR 中提出的剩余挑战和未决问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cab/10181661/1d4dd2046c19/sensors-23-04441-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验