Zhang Jingqi, Bermingham Michael J, Otte Joseph, Liu Yingang, Hou Ziyong, Yang Nan, Yin Yu, Bayat Mohamad, Lin Weikang, Huang Xiaoxu, StJohn David H, Dargusch Matthew S
School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, Brisbane, QLD, Australia.
Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Brisbane, QLD, Australia.
Science. 2024 Feb 9;383(6683):639-645. doi: 10.1126/science.adj0141. Epub 2024 Feb 8.
Coarse columnar grains and heterogeneously distributed phases commonly form in metallic alloys produced by three-dimensional (3D) printing and are often considered undesirable because they can impart nonuniform and inferior mechanical properties. We demonstrate a design strategy to unlock consistent and enhanced properties directly from 3D printing. Using Ti-5Al-5Mo-5V-3Cr as a model alloy, we show that adding molybdenum (Mo) nanoparticles promotes grain refinement during solidification and suppresses the formation of phase heterogeneities during solid-state thermal cycling. The microstructural change because of the bifunctional additive results in uniform mechanical properties and simultaneous enhancement of both strength and ductility. We demonstrate how this alloy can be modified by a single component to address unfavorable microstructures, providing a pathway to achieve desirable mechanical characteristics directly from 3D printing.
在通过三维(3D)打印生产的金属合金中,通常会形成粗大的柱状晶粒和分布不均的相,这些通常被认为是不理想的,因为它们会赋予材料不均匀且较差的机械性能。我们展示了一种设计策略,可直接从3D打印中获得一致且增强的性能。以Ti-5Al-5Mo-5V-3Cr作为模型合金,我们表明添加钼(Mo)纳米颗粒可促进凝固过程中的晶粒细化,并抑制固态热循环过程中相不均匀性的形成。由于这种双功能添加剂导致的微观结构变化,使得材料具有均匀的机械性能,同时强度和延展性都得到增强。我们展示了如何通过单一成分对这种合金进行改性,以解决不良的微观结构问题,为直接从3D打印中获得理想的机械特性提供了一条途径。