Bešo E, Kalabušić S, Pilav E
Department of Mathematics and Computer Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina.
Department of Mathematics and Computer Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina.
Math Biosci. 2024 Apr;370:109157. doi: 10.1016/j.mbs.2024.109157. Epub 2024 Feb 6.
This research paper delves into the two-dimensional discrete plant-herbivore model. In this model, herbivores are food-limited and affect the plants' density in their environment. Our analysis reveals that this system has equilibrium points of extinction, exclusion, and coexistence. We analyze the behavior of solutions near these points and prove that the extinction and exclusion equilibrium points are globally asymptotically stable in certain parameter regions. At the boundary equilibrium, we prove the existence of transcritical and period-doubling bifurcations with stable two-cycle. Transcritical bifurcation occurs when the plant's maximum growth rate or food-limited parameter reaches a specific boundary. This boundary serves as an invasion boundary for populations of plants or herbivores. At the interior equilibrium, we prove the occurrence of transcritical, Neimark-Sacker, and period-doubling bifurcations with an unstable two-cycle. Our research also establishes that the system is persistent in certain regions of the first quadrant. We demonstrate that the local asymptotic stability of the interior equilibrium does not guarantee the system's persistence. Bistability exists between boundary attractors (logistic dynamics) and interior equilibrium for specific parameters' regions. We conclude that changes to the food-limitation parameter can significantly alter the system's dynamic behavior. To validate our theoretical findings, we conduct numerical simulations.
这篇研究论文深入探讨了二维离散植物 - 食草动物模型。在该模型中,食草动物受食物限制,并影响其环境中植物的密度。我们的分析表明,该系统具有灭绝、排斥和共存的平衡点。我们分析了这些点附近解的行为,并证明在某些参数区域内,灭绝和排斥平衡点是全局渐近稳定的。在边界平衡点处,我们证明了具有稳定双周期的跨临界分岔和倍周期分岔的存在。当植物的最大生长速率或食物限制参数达到特定边界时,会发生跨临界分岔。这个边界充当植物或食草动物种群的入侵边界。在内部平衡点处,我们证明了具有不稳定双周期的跨临界、Neimark - Sacker和倍周期分岔的发生。我们的研究还表明,该系统在第一象限的某些区域是持久的。我们证明内部平衡点的局部渐近稳定性并不能保证系统的持久性。对于特定参数区域,边界吸引子(逻辑斯谛动力学)和内部平衡点之间存在双稳性。我们得出结论,食物限制参数的变化会显著改变系统的动态行为。为了验证我们的理论发现,我们进行了数值模拟。