Qurban Muhammad, Khaliq Abdul, Nisar Kottakkaran Scooppy, Shah Nehad Ali
Department of Mathematics, Riphah International University, Lahore, Pakistan.
Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
Heliyon. 2024 May 15;10(10):e30754. doi: 10.1016/j.heliyon.2024.e30754. eCollection 2024 May 30.
This research focuses on the interaction between the grape borer and grapevine using a discrete-time plant-herbivore model with Allee's effect. We specifically investigate a model that incorporates a strong predator functional response to better understand the system's qualitative behavior at positive equilibrium points. In the present study, we explore the topological classifications at fixed points, stability analysis, Neimark-Sacker, Transcritical bifurcation and State feedback control in the two-dimensional discrete-time plant-herbivore model. It is proved that for all involved parameters and , discrete-time plant-herbivore model has boundary and interior fixed points: , and respectively. Then by linear stability theory, local dynamics with different topological classifications are investigated at fixed points: , and . Our investigation uncovers that the boundary equilibrium experiences a transcritical bifurcation, whereas the unique positive steady-state of the discrete-time plant-herbivore model undergoes a Neimark-Sacker bifurcation. To address the periodic fluctuations in grapevine population density and other unpredictable behaviors observed in the model, we propose implementing state feedback chaos control. To support our theoretical findings, we provide comprehensive numerical simulations, phase portraits, dynamics diagrams, and a graph of the maximum Lyapunov exponent. These visual representations enhance the clarity of our research outcomes and further validate the effectiveness of the chaos control approach.
本研究利用具有阿利效应的离散时间植物 - 食草动物模型,聚焦于葡萄透翅蛾与葡萄藤之间的相互作用。我们特别研究了一个纳入强捕食者功能反应的模型,以便更好地理解该系统在正平衡点处的定性行为。在本研究中,我们探讨了二维离散时间植物 - 食草动物模型在不动点处的拓扑分类、稳定性分析、奈马克 - 萨克分岔、跨临界分岔和状态反馈控制。证明了对于所有涉及的参数 和 ,离散时间植物 - 食草动物模型分别具有边界和内部不动点: 、 和 。然后通过线性稳定性理论,研究了在不动点 、 和 处具有不同拓扑分类的局部动力学。我们的研究发现边界平衡点 经历跨临界分岔,而离散时间植物 - 食草动物模型的唯一正稳态 经历奈马克 - 萨克分岔。为了解决模型中观察到的葡萄藤种群密度的周期性波动和其他不可预测行为,我们建议实施状态反馈混沌控制。为了支持我们的理论发现,我们提供了全面的数值模拟、相图、动力学图以及最大李雅普诺夫指数图。这些可视化表示增强了我们研究结果的清晰度,并进一步验证了混沌控制方法的有效性。