Suppr超能文献

一个纳入阿利效应的植物-食草动物模型的动力学与控制

Dynamics and control of a plant-herbivore model incorporating Allee's effect.

作者信息

Qurban Muhammad, Khaliq Abdul, Nisar Kottakkaran Scooppy, Shah Nehad Ali

机构信息

Department of Mathematics, Riphah International University, Lahore, Pakistan.

Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.

出版信息

Heliyon. 2024 May 15;10(10):e30754. doi: 10.1016/j.heliyon.2024.e30754. eCollection 2024 May 30.

Abstract

This research focuses on the interaction between the grape borer and grapevine using a discrete-time plant-herbivore model with Allee's effect. We specifically investigate a model that incorporates a strong predator functional response to better understand the system's qualitative behavior at positive equilibrium points. In the present study, we explore the topological classifications at fixed points, stability analysis, Neimark-Sacker, Transcritical bifurcation and State feedback control in the two-dimensional discrete-time plant-herbivore model. It is proved that for all involved parameters and , discrete-time plant-herbivore model has boundary and interior fixed points: , and respectively. Then by linear stability theory, local dynamics with different topological classifications are investigated at fixed points: , and . Our investigation uncovers that the boundary equilibrium experiences a transcritical bifurcation, whereas the unique positive steady-state of the discrete-time plant-herbivore model undergoes a Neimark-Sacker bifurcation. To address the periodic fluctuations in grapevine population density and other unpredictable behaviors observed in the model, we propose implementing state feedback chaos control. To support our theoretical findings, we provide comprehensive numerical simulations, phase portraits, dynamics diagrams, and a graph of the maximum Lyapunov exponent. These visual representations enhance the clarity of our research outcomes and further validate the effectiveness of the chaos control approach.

摘要

本研究利用具有阿利效应的离散时间植物 - 食草动物模型,聚焦于葡萄透翅蛾与葡萄藤之间的相互作用。我们特别研究了一个纳入强捕食者功能反应的模型,以便更好地理解该系统在正平衡点处的定性行为。在本研究中,我们探讨了二维离散时间植物 - 食草动物模型在不动点处的拓扑分类、稳定性分析、奈马克 - 萨克分岔、跨临界分岔和状态反馈控制。证明了对于所有涉及的参数 和 ,离散时间植物 - 食草动物模型分别具有边界和内部不动点: 、 和 。然后通过线性稳定性理论,研究了在不动点 、 和 处具有不同拓扑分类的局部动力学。我们的研究发现边界平衡点 经历跨临界分岔,而离散时间植物 - 食草动物模型的唯一正稳态 经历奈马克 - 萨克分岔。为了解决模型中观察到的葡萄藤种群密度的周期性波动和其他不可预测行为,我们建议实施状态反馈混沌控制。为了支持我们的理论发现,我们提供了全面的数值模拟、相图、动力学图以及最大李雅普诺夫指数图。这些可视化表示增强了我们研究结果的清晰度,并进一步验证了混沌控制方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29bd/11141269/ff452105fbb4/gr001.jpg

相似文献

1
Dynamics and control of a plant-herbivore model incorporating Allee's effect.
Heliyon. 2024 May 15;10(10):e30754. doi: 10.1016/j.heliyon.2024.e30754. eCollection 2024 May 30.
2
Bifurcation analysis and chaos control for a plant-herbivore model with weak predator functional response.
J Biol Dyn. 2019 Dec;13(1):481-501. doi: 10.1080/17513758.2019.1638976.
5
Food-limited plant-herbivore model: Bifurcations, persistence, and stability.
Math Biosci. 2024 Apr;370:109157. doi: 10.1016/j.mbs.2024.109157. Epub 2024 Feb 6.
6
Exploring chaos and bifurcation in a discrete prey-predator based on coupled logistic map.
Sci Rep. 2024 Jul 12;14(1):16118. doi: 10.1038/s41598-024-62439-8.
7
Bifurcation and chaos analysis for a discrete ecological developmental systems.
Nonlinear Dyn. 2021;104(4):4671-4680. doi: 10.1007/s11071-021-06474-4. Epub 2021 Apr 26.
8
Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor.
Math Biosci Eng. 2022 Apr 28;19(7):6659-6679. doi: 10.3934/mbe.2022313.
9
Dynamics study of nonlinear discrete predator-prey system with Michaelis-Menten type harvesting.
Math Biosci Eng. 2023 Aug 25;20(9):16939-16961. doi: 10.3934/mbe.2023755.
10
Neimark-Sacker bifurcation of a two-dimensional discrete-time predator-prey model.
Springerplus. 2016 Feb 18;5:126. doi: 10.1186/s40064-015-1618-y. eCollection 2016.

本文引用的文献

1
Bifurcation analysis and chaos control for a plant-herbivore model with weak predator functional response.
J Biol Dyn. 2019 Dec;13(1):481-501. doi: 10.1080/17513758.2019.1638976.
2
Dynamics of a plant-herbivore model.
J Biol Dyn. 2008 Apr;2(2):89-101. doi: 10.1080/17513750801956313.
3
Dynamics of a plant-herbivore-predator system with plant-toxicity.
Math Biosci. 2011 Feb;229(2):190-204. doi: 10.1016/j.mbs.2010.12.005. Epub 2010 Dec 30.
4
Stoichiometric plant-herbivore models and their interpretation.
Math Biosci Eng. 2004 Sep;1(2):215-22. doi: 10.3934/mbe.2004.1.215.
5
Predator-prey system with strong Allee effect in prey.
J Math Biol. 2011 Mar;62(3):291-331. doi: 10.1007/s00285-010-0332-1. Epub 2010 Mar 12.
6
Food limitation and insect outbreaks: complex dynamics in plant-herbivore models.
J Anim Ecol. 2007 Sep;76(5):1004-14. doi: 10.1111/j.1365-2656.2007.01263.x.
7
Mapping the dynamics of a bursting neuron.
Philos Trans R Soc Lond B Biol Sci. 1993 Sep 29;341(1298):345-59. doi: 10.1098/rstb.1993.0121.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验