Suppr超能文献

泛素连接酶 HACE1 的自身抑制和底物识别的结构机制。

Structural mechanisms of autoinhibition and substrate recognition by the ubiquitin ligase HACE1.

机构信息

Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.

Research Group 'Bioanalytical Mass Spectrometry', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.

出版信息

Nat Struct Mol Biol. 2024 Feb;31(2):364-377. doi: 10.1038/s41594-023-01203-4. Epub 2024 Feb 8.

Abstract

Ubiquitin ligases (E3s) are pivotal specificity determinants in the ubiquitin system by selecting substrates and decorating them with distinct ubiquitin signals. However, structure determination of the underlying, specific E3-substrate complexes has proven challenging owing to their transient nature. In particular, it is incompletely understood how members of the catalytic cysteine-driven class of HECT-type ligases (HECTs) position substrate proteins for modification. Here, we report a cryogenic electron microscopy (cryo-EM) structure of the full-length human HECT HACE1, along with solution-based conformational analyses by small-angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry. Structure-based functional analyses in vitro and in cells reveal that the activity of HACE1 is stringently regulated by dimerization-induced autoinhibition. The inhibition occurs at the first step of the catalytic cycle and is thus substrate-independent. We use mechanism-based chemical crosslinking to reconstitute a complex of activated, monomeric HACE1 with its major substrate, RAC1, determine its structure by cryo-EM and validate the binding mode by solution-based analyses. Our findings explain how HACE1 achieves selectivity in ubiquitinating the active, GTP-loaded state of RAC1 and establish a framework for interpreting mutational alterations of the HACE1-RAC1 interplay in disease. More broadly, this work illuminates central unexplored aspects in the architecture, conformational dynamics, regulation and specificity of full-length HECTs.

摘要

泛素连接酶(E3s)是泛素系统中关键的特异性决定因素,通过选择底物并为其添加独特的泛素信号来修饰它们。然而,由于其瞬态性质,基础特定 E3-底物复合物的结构确定一直具有挑战性。特别是,催化半胱氨酸驱动的 HECT 型连接酶(HECTs)家族成员如何将底物蛋白定位进行修饰,这一点还不完全清楚。在这里,我们报告了全长人 HECT HACE1 的低温电子显微镜(cryo-EM)结构,以及基于小角度 X 射线散射和氢氘交换质谱的溶液构象分析。基于结构的体外和细胞内功能分析表明,HACE1 的活性受到二聚化诱导的自动抑制的严格调节。抑制发生在催化循环的第一步,因此与底物无关。我们使用基于机制的化学交联来重建激活的单体 HACE1 与其主要底物 RAC1 的复合物,通过 cryo-EM 确定其结构,并通过基于溶液的分析验证结合模式。我们的发现解释了 HACE1 如何实现对 RAC1 的活性、GTP 加载状态的泛素化选择性,并为解释 HACE1-RAC1 相互作用在疾病中的突变改变建立了框架。更广泛地说,这项工作阐明了全长 HECTs 的结构、构象动力学、调节和特异性方面的核心未探索方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a2a/10873202/14abf280cec4/41594_2023_1203_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验