Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada.
Nat Methods. 2023 Jun;20(6):860-870. doi: 10.1038/s41592-023-01853-8. Epub 2023 May 11.
Modeling flexible macromolecules is one of the foremost challenges in single-particle cryogenic-electron microscopy (cryo-EM), with the potential to illuminate fundamental questions in structural biology. We introduce Three-Dimensional Flexible Refinement (3DFlex), a motion-based neural network model for continuous molecular heterogeneity for cryo-EM data. 3DFlex exploits knowledge that conformational variability of a protein is often the result of physical processes that transport density over space and tend to preserve local geometry. From two-dimensional image data, 3DFlex enables the determination of high-resolution 3D density, and provides an explicit model of a flexible protein's motion over its conformational landscape. Experimentally, for large molecular machines (tri-snRNP spliceosome complex, translocating ribosome) and small flexible proteins (TRPV1 ion channel, αVβ8 integrin, SARS-CoV-2 spike), 3DFlex learns nonrigid molecular motions while resolving details of moving secondary structure elements. 3DFlex can improve 3D density resolution beyond the limits of existing methods because particle images contribute coherent signal over the conformational landscape.
对单颗粒低温电子显微镜(cryo-EM)而言,对柔性大分子进行建模是最首要的挑战之一,这有可能阐明结构生物学中的基本问题。我们引入了三维柔性精修(3DFlex),这是一种基于运动的神经网络模型,可用于对 cryo-EM 数据中的连续分子异质性进行建模。3DFlex 利用了这样一种知识,即蛋白质构象的可变性通常是在将密度在空间中传输的物理过程的结果,而且这种过程往往会保留局部几何形状。从二维图像数据中,3DFlex 能够确定高分辨率的 3D 密度,并为柔性蛋白质在构象景观上的运动提供明确的模型。在实验中,对于大型分子机器(三-snRNP 剪接体复合物、移位核糖体)和小型柔性蛋白质(TRPV1 离子通道、αVβ8 整合素、SARS-CoV-2 刺突蛋白),3DFlex 在学习非刚性分子运动的同时,还能解析运动的二级结构元素的细节。3DFlex 可以提高 3D 密度分辨率,超越现有方法的限制,因为粒子图像在构象景观上贡献了相干信号。