鉴定和验证与糖酵解相关的分类学,以改善脑胶质瘤的预后。

Identification and validation of a glycolysis-related taxonomy for improving outcomes in glioma.

机构信息

Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.

Department of Urology, Guangyuan Central Hospital, Guangyuan, China.

出版信息

CNS Neurosci Ther. 2024 Feb;30(2):e14601. doi: 10.1111/cns.14601.

Abstract

BACKGROUND

Reprogramming of glucose metabolism is a prominent abnormal energy metabolism in glioma. However, the efficacy of treatments targeting glycolysis varies among patients. The present study aimed to classify distinct glycolysis subtypes (GS) of glioma, which may help to improve the therapy response.

METHODS

The expression profiles of glioma were downloaded from public datasets to perform an enhanced clustering analysis to determine the GS. A total of 101 combinations based on 10 machine learning algorithms were performed to screen out the most valuable glycolysis-related glioma signature (GGS). Through RSF and plsRcox algorithms, adrenomedullin (ADM) was eventually obtained as the most significant glycolysis-related gene for prognostic prediction in glioma. Furthermore, drug sensitivity analysis, molecular docking, and in vitro experiments were utilized to verify the efficacy of ADM and ingenol mebutate (IM).

RESULTS

Glioma patients were classified into five distinct GS (GS1-GS5), characterized by varying glycolytic metabolism levels, molecular expression, immune cell infiltration, immunogenic modulators, and clinical features. Anti-CTLA4 and anti-PD-L1 antibodies significantly improved the prognosis for GS2 and GS5, respectively. ADM has been identified as a potential biomarker for targeted glycolytic therapy in glioma patients. In vitro experiments demonstrated that IM inhibited glioma cell progression by inhibiting ADM.

CONCLUSION

This study elucidates that evaluating GS is essential for comprehending the heterogeneity of glioma, which is pivotal for predicting immune cell infiltration (ICI) characterization, prognosis, and personalized immunotherapy regimens. We also explored the glycolysis-related genes ADM and IM to develop a theoretical framework for anti-tumor strategies targeting glycolysis.

摘要

背景

葡萄糖代谢重编程是神经胶质瘤中一种突出的异常能量代谢。然而,针对糖酵解的治疗效果在患者之间存在差异。本研究旨在对神经胶质瘤的不同糖酵解亚型(GS)进行分类,这可能有助于改善治疗反应。

方法

从公共数据库下载神经胶质瘤的表达谱,进行增强聚类分析以确定 GS。共进行了 101 次基于 10 种机器学习算法的组合,以筛选出最有价值的与糖酵解相关的神经胶质瘤特征(GGS)。通过 RSF 和 plsRcox 算法,最终获得了作为神经胶质瘤预后预测最显著的与糖酵解相关基因——肾上腺髓质素(ADM)。此外,还进行了药物敏感性分析、分子对接和体外实验,以验证 ADM 和 ingenol mebutate(IM)的疗效。

结果

神经胶质瘤患者被分为五个不同的 GS(GS1-GS5),其特征是糖酵解代谢水平、分子表达、免疫细胞浸润、免疫调节因子和临床特征各不相同。抗 CTLA4 和抗 PD-L1 抗体分别显著改善了 GS2 和 GS5 的预后。ADM 已被确定为神经胶质瘤患者靶向糖酵解治疗的潜在生物标志物。体外实验表明,IM 通过抑制 ADM 抑制神经胶质瘤细胞的进展。

结论

本研究阐明了评估 GS 对于理解神经胶质瘤异质性至关重要,这对于预测免疫细胞浸润(ICI)特征、预后和个性化免疫治疗方案具有重要意义。我们还探讨了与糖酵解相关的基因 ADM 和 IM,为针对糖酵解的抗肿瘤策略提供了理论框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7021/10853657/961ae3397e9a/CNS-30-e14601-g015.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索