Lu Jin, Lew Matthew D
Preston M. Green Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis St. Louis MO 63130 USA
Institute of Materials Science and Engineering, Washington University in St. Louis St. Louis MO 63130 USA.
Chem Sci. 2023 Dec 29;15(6):2037-2046. doi: 10.1039/d3sc05293a. eCollection 2024 Feb 7.
We report reversible switching of oxazine, cyanine, and rhodamine dyes by a nanoporous antimony-doped tin oxide electrode that enables single-molecule (SM) imaging of electrochemical activity. Since the emissive state of each fluorophore is modulated by electrochemical potential, the number of emitting single molecules follows a sigmoid function during a potential scan, and we thus optically determine the formal redox potential of each dye. We find that the presence of redox mediators (phenazine methosulfate and riboflavin) functions as an electrochemical switch on each dye's emissive state and observe significantly altered electrochemical potential and kinetics. We are therefore able to measure optically how redox mediators and the solid-state electrode modulate the redox state of fluorescent molecules, which follows an electrocatalytic (EC') mechanism, with SM sensitivity over a 900 μm field of view. Our observations indicate that redox mediator-assisted SM electrochemical imaging (SMEC) could be potentially used to sense any electroactive species. Combined with SM blinking and localization microscopy, SMEC imaging promises to resolve the nanoscale spatial distributions of redox species and their redox states, as well as the electron transfer kinetics of electroactive species in various bioelectrochemical processes.
我们报道了通过纳米多孔锑掺杂氧化锡电极实现恶嗪、花菁和罗丹明染料的可逆切换,该电极能够对电化学活性进行单分子(SM)成像。由于每个荧光团的发射状态受电化学势调制,在电势扫描期间发射单分子的数量遵循S形函数,因此我们通过光学方法确定了每种染料的形式氧化还原电势。我们发现氧化还原介质(硫酸吩嗪和核黄素)的存在对每种染料的发射状态起到电化学开关的作用,并观察到电化学势和动力学发生了显著变化。因此,我们能够通过光学方法测量氧化还原介质和固态电极如何调节荧光分子的氧化还原状态,其遵循电催化(EC')机制,在900μm视场内具有单分子灵敏度。我们的观察结果表明,氧化还原介质辅助的单分子电化学成像(SMEC)可能潜在地用于检测任何电活性物种。结合单分子闪烁和定位显微镜,SMEC成像有望解析氧化还原物种的纳米级空间分布及其氧化还原状态,以及各种生物电化学过程中电活性物种的电子转移动力学。