Mohana Panneerselvam, Isacfranklin Melkiyur, Yuvakkumar Rathinam, Ravi Ganesan, Kungumadevi Lakshmanan, Arunmetha Sundaramoorthy, Han Jun Hyun, Hong Sun Ig
Department of Physics, Alagappa University, Karaikudi 630003, India.
Department of Physics, Chandigarh University, Mohali 140413, India.
Nanomaterials (Basel). 2024 Jan 29;14(3):280. doi: 10.3390/nano14030280.
In this study, the pristine MgO, MgO/CNT and Ni-MgO/CNT nanocomposites were processed using the impregnation and chemical vapor deposition methods and analyzed for hydrogen evolution reaction (HER) using the electrochemical water splitting process. Furthermore, the effect of nickel on the deposited carbon was systematically elaborated in this study. The highly conductive carbon nanotubes (CNTs) deposited on the metal surface of the Ni-MgO nanocomposite heterostructure provides a robust stability and superior electrocatalytic activity. The optimized Ni-MgO/CNT nanocomposite exhibited hierarchical, helical-shaped carbon nanotubes adorned on the surface of the Ni-MgO flakes, forming a hybrid metal-carbon network structure. The catalytic HER was carried out in a 1M alkaline KOH electrolyte, and the optimized Ni-MgO/CNT nanocomposite achieved a low (117 mV) overpotential value (ɳ) at 10 mA cm and needed a low (116 mV/dec) Tafel value, denotes the Volmer-Heyrovsky pathway. Also, the high electrochemical active surface area (ECSA) value of the Ni-MgO/CNT nanocomposite attained 515 cm, which is favorable for the generation of abundant electroactive species, and the prepared electrocatalyst durability was also performed using a chronoamperometry test for the prolonged duration of 20 h at 10 mA cm and exhibited good stability, with a 72% retention. Hence, the obtained results demonstrate that the optimized Ni-MgO/CNT nanocomposite is a highly active and cost-effective electrocatalyst for hydrogen energy production.
在本研究中,采用浸渍法和化学气相沉积法制备了原始氧化镁、氧化镁/碳纳米管和镍-氧化镁/碳纳米管纳米复合材料,并通过电化学水分解过程对析氢反应(HER)进行了分析。此外,本研究还系统阐述了镍对沉积碳的影响。沉积在镍-氧化镁纳米复合异质结构金属表面的高导电性碳纳米管(CNTs)提供了强大的稳定性和优异的电催化活性。优化后的镍-氧化镁/碳纳米管纳米复合材料呈现出分层的螺旋形碳纳米管,装饰在镍-氧化镁薄片表面,形成了一种混合金属-碳网络结构。在1M碱性氢氧化钾电解液中进行催化析氢反应,优化后的镍-氧化镁/碳纳米管纳米复合材料在10 mA cm时实现了低(117 mV)过电位值(ɳ),且需要低(116 mV/dec)的塔菲尔值,表明是Volmer-Heyrovsky途径。此外,镍-氧化镁/碳纳米管纳米复合材料的高电化学活性表面积(ECSA)值达到515 cm,有利于生成丰富的电活性物种,并且还通过计时电流法在10 mA cm下进行了20小时的长时间测试,以评估所制备的电催化剂的耐久性,结果显示其具有良好的稳定性,保留率为72%。因此,所得结果表明,优化后的镍-氧化镁/碳纳米管纳米复合材料是一种用于氢能生产的高活性且具有成本效益的电催化剂。