Cui Ting, Huang Zhican, Luo Kun, Nie Jingwei, Xv Yimei, Zeng Zhu, Liao Linghan, Yang Xin, Zhou Haiyan
College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China.
Biochem Genet. 2024 Dec;62(6):5157-5178. doi: 10.1007/s10528-023-10650-z. Epub 2024 Feb 9.
There is a potential link between rheumatoid arthritis (RA) and idiopathic pulmonary fibrosis (IPF). The aim of this study is to investigate the molecular processes that underlie the development of these two conditions by bioinformatics methods. The gene expression samples for RA (GSE77298) and IPF (GSE24206) were retrieved from the Gene Expression Omnibus (GEO) database. After identifying the overlapping differentially expressed genes (DEGs) for RA and IPF, we conducted functional annotation, protein-protein interaction (PPI) network analysis, and hub gene identification. Finally, we used the hub genes to predict potential medications for the treatment of both disorders. We identified 74 common DEGs for further analysis. Functional analysis demonstrated that cellular components, biological processes, and molecular functions all played a role in the emergence and progression of RA and IPF. Using the cytoHubba plugin, we identified 7 important hub genes, namely COL3A1, SDC1, CCL5, CXCL13, MMP1, THY1, and BDNF. As diagnostic indicators for RA, SDC1, CCL5, CXCL13, MMP1, and THY1 showed favorable values. For IPF, COL3A1, SDC1, CCL5, CXCL13, THY1, and BDNF were favorable diagnostic markers. Furthermore, we predicted 61 Chinese and 69 Western medications using the hub genes. Our research findings demonstrate a shared pathophysiology between RA and IPF, which may provide new insights for more mechanistic research and more effective treatments. These common pathways and hub genes identified in our study offer potential opportunities for developing more targeted therapies that can address both disorders.
类风湿性关节炎(RA)与特发性肺纤维化(IPF)之间可能存在联系。本研究的目的是通过生物信息学方法研究这两种疾病发生发展的分子机制。从基因表达综合数据库(GEO)中检索RA(GSE77298)和IPF(GSE24206)的基因表达样本。在确定RA和IPF的重叠差异表达基因(DEG)后,我们进行了功能注释、蛋白质-蛋白质相互作用(PPI)网络分析和枢纽基因鉴定。最后,我们使用枢纽基因预测治疗这两种疾病的潜在药物。我们鉴定出74个共同的DEG用于进一步分析。功能分析表明,细胞成分、生物学过程和分子功能在RA和IPF的发生发展中均起作用。使用cytoHubba插件,我们鉴定出7个重要的枢纽基因,即COL3A1、SDC1、CCL5、CXCL13、MMP1、THY1和BDNF。作为RA的诊断指标,SDC1、CCL5、CXCL13、MMP1和THY1显示出良好的值。对于IPF,COL3A1、SDC1、CCL5、CXCL13、THY1和BDNF是良好的诊断标志物。此外,我们使用枢纽基因预测了61种中药和69种西药。我们的研究结果表明RA和IPF之间存在共同的病理生理学,这可能为更多的机制研究和更有效的治疗提供新的见解。我们研究中确定的这些共同途径和枢纽基因为开发能够治疗这两种疾病的更有针对性的疗法提供了潜在机会。