文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

REMOVER-PITCh:利用高度多重化的 CRISPR-Cas9 进行微同源介导的长程基因替换。

REMOVER-PITCh: microhomology-assisted long-range gene replacement with highly multiplexed CRISPR-Cas9.

机构信息

Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.

Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., 1624 Shimokotachi, Koda-Cho, Akitakata-Shi, Hiroshima, 739-1195, Japan.

出版信息

In Vitro Cell Dev Biol Anim. 2024 Aug;60(7):697-707. doi: 10.1007/s11626-024-00850-1. Epub 2024 Feb 9.


DOI:10.1007/s11626-024-00850-1
PMID:38334880
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11297102/
Abstract

A variety of CRISPR-Cas9-based gene editing technologies have been developed, including gene insertion and gene replacement, and applied to the study and treatment of diseases. While numerous studies have been conducted to improve the efficiency of gene insertion and to expand the system in various ways, there have been relatively few reports on gene replacement technology; therefore, further improvements are still needed in this context. Here, we developed the REMOVER-PITCh system to establish an efficient long-range gene replacement method and demonstrated its utility at two genomic loci in human cultured cells. REMOVER-PITCh depends on microhomology-assisted gene insertion technology called PITCh with highly multiplexed CRISPR-Cas9. First, we achieved gene replacement of about 20-kb GUSB locus using this system. Second, by applying the previously established knock-in-enhancing platform, the LoAD system, along with REMOVER-PITCh, we achieved the replacement of a longer gene region of about 200 kb at the ARSB locus. Our REMOVER-PITCh system will make it possible to remove and incorporate a variety of sequences from and into the genome, respectively, which will facilitate the generation of various disease and humanized models.

摘要

已经开发了多种基于 CRISPR-Cas9 的基因编辑技术,包括基因插入和基因替换,并将其应用于疾病的研究和治疗。虽然已经进行了大量研究来提高基因插入的效率,并以各种方式扩展该系统,但关于基因替换技术的报道相对较少;因此,在这方面仍需要进一步改进。在这里,我们开发了 REMOVER-PITCh 系统,以建立一种高效的长距离基因替换方法,并在人培养细胞中的两个基因组座上证明了其效用。REMOVER-PITCh 依赖于称为 PITCh 的具有高度多重化的 CRISPR-Cas9 的微同源辅助基因插入技术。首先,我们使用该系统实现了约 20-kb GUSB 基因座的基因替换。其次,通过应用先前建立的基因敲入增强平台 LoAD 系统以及 REMOVER-PITCh,我们实现了大约 200kb 的较长基因区域在 ARSB 基因座的替换。我们的 REMOVER-PITCh 系统将能够分别从基因组中去除和掺入各种序列,这将有助于生成各种疾病和人类模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92d7/11297102/0ae71195208c/11626_2024_850_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92d7/11297102/e28da41bd955/11626_2024_850_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92d7/11297102/0aa2f5a5d1dc/11626_2024_850_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92d7/11297102/6c81c22662e3/11626_2024_850_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92d7/11297102/0ae71195208c/11626_2024_850_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92d7/11297102/e28da41bd955/11626_2024_850_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92d7/11297102/0aa2f5a5d1dc/11626_2024_850_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92d7/11297102/6c81c22662e3/11626_2024_850_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92d7/11297102/0ae71195208c/11626_2024_850_Fig4_HTML.jpg

相似文献

[1]
REMOVER-PITCh: microhomology-assisted long-range gene replacement with highly multiplexed CRISPR-Cas9.

In Vitro Cell Dev Biol Anim. 2024-8

[2]
Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.

AIDS Rev. 2017

[3]
CRISPR-Cas9-Mediated Genome Modifications in Zebrafish.

Methods Mol Biol. 2023

[4]
Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in Setaria viridis.

Plant J. 2020-11

[5]
Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.

Methods. 2017-5-15

[6]
Establishment of expanded and streamlined pipeline of PITCh knock-in - a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO.

Bioengineered. 2017-4-28

[7]
Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in .

mSphere. 2019-8-21

[8]
[Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals].

Yi Chuan. 2020-7-20

[9]
High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells.

Acta Biomater. 2016-4-1

[10]
CRISPR/Cas: A powerful tool for gene function study and crop improvement.

J Adv Res. 2021-3

引用本文的文献

[1]
CRISPR/Cas9-mediated promoterless gene targeting reduces lysosome storage in MPS VII mice.

Sci China Life Sci. 2025-7-2

[2]
Engineering structural variants to interrogate genome function.

Nat Genet. 2024-12

本文引用的文献

[1]
Biallelic and gene-wide genomic substitution for endogenous intron and retroelement mutagenesis in human cells.

Nat Commun. 2022-7-21

[2]
A homology independent sequence replacement strategy in human cells using a CRISPR nuclease.

Open Biol. 2021-1

[3]
Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats.

Hum Genet. 2021-2

[4]
In vivo and in vitro knockout system labelled using fluorescent protein via microhomology-mediated end joining.

Life Sci Alliance. 2019-12-24

[5]
Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction.

Cell Res. 2019-8-23

[6]
Viable Mice with Extensive Gene Humanization (25-kbp) Created Using Embryonic Stem Cell/Blastocyst and CRISPR/Zygote Injection Approaches.

Sci Rep. 2018-10-9

[7]
Mucopolysaccharidosis type VI (MPS VI) and molecular analysis: Review and classification of published variants in the ARSB gene.

Hum Mutat. 2018-9-17

[8]
Biased genome editing using the local accumulation of DSB repair molecules system.

Nat Commun. 2018-8-16

[9]
A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells.

Nat Med. 2018-8-6

[10]
Magic wands of CRISPR-lots of choices for gene knock-in.

Cell Biol Toxicol. 2017-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索