a Department of Mathematical and Life Sciences, Graduate School of Science , Hiroshima University , Hiroshima , Japan.
Bioengineered. 2017 May 4;8(3):302-308. doi: 10.1080/21655979.2017.1313645. Epub 2017 Apr 28.
The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer ( http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html ), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively.
新兴的基因组编辑技术使得基因敲入细胞的创建变得容易、高效和快速,这极大地加速了哺乳动物功能基因组学领域的研究,包括人类。我们最近开发了一种基于微同源介导末端连接的基因敲入方法,称为 PITCh 系统,并展示了其各种应用的例子。由于 PITCh 系统只需要非常短的微同源序列(最多 40bp)和供体载体上的单指导 RNA 靶点,与基于同源重组的基因敲入的传统靶向载体相比,靶向构建体可以快速制备。在这里,我们建立了一个简化的流水线来设计和进行 PITCh 敲入,通过创建基于网络的设计软件 PITCh designer(http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html),进一步扩大这种方法的可用性,以及展示一个多功能基因盒敲入的实验例子。PITCh designer 不仅可以自动设计适当的微同源序列,还可以设计构建用于 PITCh 敲入的特异性基因座供体载体的引物。通过使用我们新建立的流水线,可以系统地产生用于监测内源性基因表达的报告细胞系,以及转基因(TG)或敲入/敲除(KIKO)细胞系。使用这些新的 PITCh 变体,可以将一个外源性启动子驱动的基因盒表达荧光蛋白基因和耐药基因整合到安全港或特定基因座中,分别创建转基因报告细胞(PITCh-TG)或带有报告基因敲入的敲除细胞(PITCh-KIKO)。