Suppr超能文献

UCL去雾:通过无监督对比学习实现真实世界图像去雾

UCL-Dehaze: Toward Real-World Image Dehazing via Unsupervised Contrastive Learning.

作者信息

Wang Yongzhen, Yan Xuefeng, Wang Fu Lee, Xie Haoran, Yang Wenhan, Zhang Xiao-Ping, Qin Jing, Wei Mingqiang

出版信息

IEEE Trans Image Process. 2024;33:1361-1374. doi: 10.1109/TIP.2024.3362153. Epub 2024 Feb 23.

Abstract

While the wisdom of training an image dehazing model on synthetic hazy data can alleviate the difficulty of collecting real-world hazy/clean image pairs, it brings the well-known domain shift problem. From a different yet new perspective, this paper explores contrastive learning with an adversarial training effort to leverage unpaired real-world hazy and clean images, thus alleviating the domain shift problem and enhancing the network's generalization ability in real-world scenarios. We propose an effective unsupervised contrastive learning paradigm for image dehazing, dubbed UCL-Dehaze. Unpaired real-world clean and hazy images are easily captured, and will serve as the important positive and negative samples respectively when training our UCL-Dehaze network. To train the network more effectively, we formulate a new self-contrastive perceptual loss function, which encourages the restored images to approach the positive samples and keep away from the negative samples in the embedding space. Besides the overall network architecture of UCL-Dehaze, adversarial training is utilized to align the distributions between the positive samples and the dehazed images. Compared with recent image dehazing works, UCL-Dehaze does not require paired data during training and utilizes unpaired positive/negative data to better enhance the dehazing performance. We conduct comprehensive experiments to evaluate our UCL-Dehaze and demonstrate its superiority over the state-of-the-arts, even only 1,800 unpaired real-world images are used to train our network. Source code is publicly available at https://github.com/yz-wang/UCL-Dehaze.

摘要

虽然在合成模糊数据上训练图像去雾模型的做法能够缓解收集真实世界模糊/清晰图像对的困难,但它带来了众所周知的域转移问题。从一个不同但全新的角度出发,本文探索了结合对抗训练的对比学习方法,以利用未配对的真实世界模糊和清晰图像,从而缓解域转移问题,并提高网络在真实世界场景中的泛化能力。我们提出了一种有效的用于图像去雾的无监督对比学习范式,称为UCL-Dehaze。未配对的真实世界清晰和模糊图像很容易获取,并且在训练我们的UCL-Dehaze网络时将分别作为重要的正样本和负样本。为了更有效地训练网络,我们制定了一种新的自对比感知损失函数,它鼓励恢复的图像在嵌入空间中接近正样本并远离负样本。除了UCL-Dehaze的整体网络架构外,还利用对抗训练来对齐正样本和去雾图像之间的分布。与最近的图像去雾工作相比,UCL-Dehaze在训练期间不需要配对数据,而是利用未配对的正/负数据来更好地提高去雾性能。我们进行了全面的实验来评估我们的UCL-Dehaze,并证明了它相对于现有技术的优越性,即使仅使用1800张未配对的真实世界图像来训练我们的网络。源代码可在https://github.com/yz-wang/UCL-Dehaze上公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验