Suppr超能文献

基于单目图像的车道检测算法 Foggy Lane 数据集合成

Foggy Lane Dataset Synthesized from Monocular Images for Lane Detection Algorithms.

机构信息

China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.

Midea Group, Shanghai 201702, China.

出版信息

Sensors (Basel). 2022 Jul 12;22(14):5210. doi: 10.3390/s22145210.

Abstract

Accurate lane detection is an essential function of dynamic traffic perception. Though deep learning (DL) based methods have been widely applied to lane detection tasks, such models rarely achieve sufficient accuracy in low-light weather conditions. To improve the model accuracy in foggy conditions, a new approach was proposed based on monocular depth prediction and an atmospheric scattering model to generate fog artificially. We applied our method to the existing CULane dataset collected in clear weather and generated 107,451 labeled foggy lane images under three different fog densities. The original and generated datasets were then used to train state-of-the-art (SOTA) lane detection networks. The experiments demonstrate that the synthetic dataset can significantly increase the lane detection accuracy of DL-based models in both artificially generated foggy lane images and real foggy scenes. Specifically, the lane detection model performance (F1-measure) was increased from 11.09 to 70.41 under the heaviest foggy conditions. Additionally, this data augmentation method was further applied to another dataset, VIL-100, to test the adaptability of this approach. Similarly, it was found that even when the camera position or level of brightness was changed from one dataset to another, the foggy data augmentation approach is still valid to improve model performance under foggy conditions without degrading accuracy on other weather conditions. Finally, this approach also sheds light on practical applications for other complex scenes such as nighttime and rainy days.

摘要

准确的车道检测是动态交通感知的基本功能。尽管基于深度学习(DL)的方法已广泛应用于车道检测任务,但这些模型在低光照天气条件下很少能达到足够的精度。为了提高模型在雾天条件下的准确性,提出了一种基于单目深度预测和大气散射模型的新方法来人为产生雾。我们将该方法应用于在晴朗天气下收集的现有 CULane 数据集,并在三种不同的雾密度下生成了 107,451 张带标签的雾天车道图像。然后,使用原始数据集和生成的数据集来训练最先进的(SOTA)车道检测网络。实验表明,该合成数据集可以显著提高基于 DL 的模型在人为生成的雾天车道图像和真实雾天场景中的车道检测精度。具体来说,在最重的雾天条件下,车道检测模型的性能(F1 分数)从 11.09 提高到 70.41。此外,该数据增强方法还进一步应用于另一个数据集 VIL-100,以测试该方法的适应性。同样,即使从一个数据集到另一个数据集的相机位置或亮度水平发生变化,雾天数据增强方法仍然可以在雾天条件下提高模型性能,而不会降低其他天气条件下的准确性。最后,该方法还为其他复杂场景(如夜间和雨天)的实际应用提供了启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验