Suppr超能文献

群体观察:先平均,后最大。

Seeing in crowds: Averaging first, then max.

机构信息

Department of Psychology, School of Social Sciences, Tsinghua University, Room 506, Weiqing Building, Beijing, 100084, People's Republic of China.

Khoury College of Computer Sciences, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA.

出版信息

Psychon Bull Rev. 2024 Aug;31(4):1856-1866. doi: 10.3758/s13423-024-02468-6. Epub 2024 Feb 9.

Abstract

Crowding, a fundamental limit in object recognition, is believed to result from excessive integration of nearby items in peripheral vision. To understand its pooling mechanisms, we measured subjects' internal response distributions in an orientation crowding task. Contrary to the prediction of an averaging model, we observed a pattern suggesting that the perceptual judgement is made based on choosing the largest response across the noise-perturbed items. A model featuring first-stage averaging and second-stage signed-max operation predicts the diverse errors made by human observers under various signal strength levels. These findings suggest that different rules operate to resolve the bottleneck at early and high-level stages of visual processing, implementing a combination of linear and nonlinear pooling strategies.

摘要

拥挤,是物体识别的一个基本限制,被认为是由于周边视觉中附近物体的过度整合造成的。为了理解其池化机制,我们在方向拥挤任务中测量了被试者的内部反应分布。与平均模型的预测相反,我们观察到一种模式,表明感知判断是基于在受噪声干扰的项目中选择最大反应来做出的。一个具有第一阶段平均和第二阶段符号最大值操作的模型预测了人类观察者在不同信号强度水平下的各种错误。这些发现表明,在视觉处理的早期和高级阶段,不同的规则用于解决瓶颈问题,实现了线性和非线性池化策略的组合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验