Wang Yifan, Ding Lailong, Lin Jiayu, Qiu Xishun, Wu Chao, Liu Changhao, Tian Yicheng, Zhang Rui, Huang Weibo, Ma Mingliang
School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China.
Polymers (Basel). 2024 Feb 5;16(3):440. doi: 10.3390/polym16030440.
Polyurea has gained significant attention in recent years as a functional polymer material, specifically regarding blast and impact protection. The molecular structure of polyurea is characterized by the rapid reaction between isocyanate and the terminal amine component, and forms an elastomeric copolymer that enhances substrate protection against blast impact and fragmentation penetration. At the nanoscale, a phase-separated microstructure emerges, with dispersed hard segment microregions within a continuous matrix of soft segments. This unique microstructure contributes to the remarkable mechanical properties of polyurea. To maximize these properties, it is crucial to analyze the molecular structure and explore methods like formulation optimization and the incorporation of reinforcing materials or fibers. Current research efforts in polyurea applications for protective purposes primarily concentrate on construction, infrastructure, military, transportation and industrial products and facilities. Future research directions should encompass deliberate formulation design and modification, systematic exploration of factors influencing protective performance across various applications and the integration of numerical simulations and experiments to reveal the protective mechanisms of polyurea. This paper provides an extensive literature review that specifically examines the utilization of polyurea for blast and impact protection. It encompasses discussions on material optimization, protective mechanisms and its applications in blast and impact protection.
近年来,聚脲作为一种功能性高分子材料,在防爆和抗冲击保护方面受到了广泛关注。聚脲的分子结构特点是异氰酸酯与末端胺组分之间的快速反应,形成一种弹性共聚物,增强了基材对爆炸冲击和碎片穿透的防护能力。在纳米尺度上,会出现一种相分离的微观结构,在连续的软段基质中存在分散的硬段微区。这种独特的微观结构造就了聚脲卓越的力学性能。为了最大化这些性能,分析分子结构并探索诸如配方优化以及添加增强材料或纤维等方法至关重要。目前聚脲在防护领域的研究主要集中在建筑、基础设施、军事、交通以及工业产品和设施方面。未来的研究方向应包括精心的配方设计与改性,系统探究不同应用中影响防护性能的因素,以及整合数值模拟和实验以揭示聚脲的防护机制。本文提供了一篇详尽的文献综述,专门探讨聚脲在防爆和抗冲击保护中的应用。内容涵盖了材料优化、防护机制及其在防爆和抗冲击保护中的应用等方面的讨论。