Ciuffreda Gianluca, Bueno-Gracia Elena, Albarova-Corral Isabel, Montaner-Cuello Alberto, Pérez-Rey Jorge, Pardos-Aguilella Pilar, Malo-Urriés Miguel, Estébanez-de-Miguel Elena
Department of Physiatry and Nursing, Faculty of Health Sciences, University of Zaragoza, Calle Domingo Miral S/N, 50009 Zaragoza, Spain.
PhysiUZerapy: Health Sciences Research Group, University of Zaragoza, Calle Domingo Miral S/N, 50009 Zaragoza, Spain.
Diagnostics (Basel). 2024 Feb 5;14(3):343. doi: 10.3390/diagnostics14030343.
Peripheral nerves are subjected to mechanical tension during limb movements and body postures. Nerve response to tensile stress can be assessed in vivo with shear-wave elastography (SWE). Greater tensile loads can lead to greater stiffness, which can be quantified using SWE. Therefore, this study aimed to conduct a systematic review and meta-analysis to perform an overview of the effect of joint movements on nerve mechanical properties in healthy nerves. The initial search (July 2023) yielded 501 records from six databases (PubMed, Embase, Scopus, Web of Science, Cochrane, and Science Direct). A total of 16 studies were included and assessed with a modified version of the Downs and Black checklist. Our results suggest an overall tendency for stiffness increase according to a pattern of neural tensioning. The main findings from the meta-analysis showed a significant increase in nerve stiffness for the median nerve with wrist extension (SMD [95%CI]: 3.16 [1.20, 5.12]), the ulnar nerve with elbow flexion (SMD [95%CI]: 2.91 [1.88, 3.95]), the sciatic nerve with ankle dorsiflexion (SMD [95%CI]: 1.13 [0.79, 1.47]), and the tibial nerve with both hip flexion (SMD [95%CI]: 2.14 [1.76, 2.51]) and ankle dorsiflexion (SMD [95%CI]: 1.52 [1.02, 2.02]). The effect of joint movement on nerve stiffness also depends on the nerve segment, the amount of movement of the joint mobilized, and the position of other joints comprised in the entirety of the nerve length. However, due to the limited number of studies, many aspects of nerve behavior together with the effect of using different ultrasound equipment or transducers for nerve stiffness evaluation still need to be fully investigated.
在肢体运动和身体姿势过程中,周围神经会受到机械张力。可通过剪切波弹性成像(SWE)在体内评估神经对拉伸应力的反应。更大的拉伸负荷会导致更大的硬度,这可以使用SWE进行量化。因此,本研究旨在进行系统综述和荟萃分析,以概述关节运动对健康神经中神经力学特性的影响。初步检索(2023年7月)从六个数据库(PubMed、Embase、Scopus、Web of Science、Cochrane和Science Direct)中获得了501条记录。共纳入16项研究,并使用Downs和Black清单的修改版进行评估。我们的结果表明,根据神经拉伸模式,硬度总体上有增加的趋势。荟萃分析的主要结果显示,腕关节伸展时正中神经的神经硬度显著增加(标准化均值差[95%置信区间]:3.16[1.20,5.12]),肘关节屈曲时尺神经的神经硬度显著增加(标准化均值差[95%置信区间]:2.91[1.88,3.95]),踝关节背屈时坐骨神经的神经硬度显著增加(标准化均值差[95%置信区间]:1.13[0.79,1.47]),髋关节屈曲(标准化均值差[95%置信区间]:2.14[1.76,2.51])和踝关节背屈(标准化均值差[95%置信区间]:1.52[1.02,2.02])时胫神经的神经硬度显著增加。关节运动对神经硬度的影响还取决于神经节段、关节活动的幅度以及整个神经长度中包含的其他关节的位置。然而,由于研究数量有限,神经行为的许多方面以及使用不同超声设备或换能器评估神经硬度的影响仍需要充分研究。