Suppr超能文献

优化用于锂离子电池的聚合物电解质膜的离子电导率和机械稳定性:将含咪唑的聚(离子液体)与聚(碳酸丙烯酯)结合。

Optimizing the Ion Conductivity and Mechanical Stability of Polymer Electrolyte Membranes Designed for Use in Lithium Ion Batteries: Combining Imidazolium-Containing Poly(ionic liquids) and Poly(propylene carbonate).

机构信息

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.

Department Chemistry and Polymer Science, Stellenbosch University, Matieland 7600, South Africa.

出版信息

Int J Mol Sci. 2024 Jan 27;25(3):1595. doi: 10.3390/ijms25031595.

Abstract

State-of-the-art Li batteries suffer from serious safety hazards caused by the reactivity of lithium and the flammable nature of liquid electrolytes. This work develops highly efficient solid-state electrolytes consisting of imidazolium-containing polyionic liquids (PILs) and lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). By employing PIL/LiTFSI electrolyte membranes blended with poly(propylene carbonate) (PPC), we addressed the problem of combining ionic conductivity and mechanical properties in one material. It was found that PPC acts as a mechanically reinforcing component that does not reduce but even enhances the ionic conductivity. While pure PILs are liquids, the tricomponent PPC/PIL/LiTFSI blends are rubber-like materials with a Young's modulus in the range of 100 MPa. The high mechanical strength of the material enables fabrication of mechanically robust free-standing membranes. The tricomponent PPC/PIL/LiTFSI membranes have an ionic conductivity of 10 S·cm at room temperature, exhibiting conductivity that is two orders of magnitude greater than bicomponent PPC/LiTFSI membranes. At 60 °C, the conductivity of PPC/PIL/LiTFSI membranes increases to 10 S·cm and further increases to 10 S·cm in the presence of plasticizers. Cyclic voltammetry measurements reveal good electrochemical stability of the tricomponent PIL/PPC/LiTFSI membrane that potentially ranges from 0 to 4.5 V vs. Li/Li+. The mechanically reinforced membranes developed in this work are promising electrolytes for potential applications in solid-state batteries.

摘要

最先进的锂离子电池由于锂的反应性和液体电解质的易燃性而存在严重的安全隐患。本工作开发了由含咪唑的聚离子液体(PIL)和双(三氟甲烷磺酰基)亚胺锂(LiTFSI)组成的高效固态电解质。通过采用与聚(碳酸丙烯酯)(PPC)共混的 PIL/LiTFSI 电解质膜,我们解决了在一种材料中结合离子电导率和机械性能的问题。结果发现,PPC 作为一种机械增强组分,不仅不会降低反而会提高离子电导率。虽然纯 PIL 是液体,但三组分 PPC/PIL/LiTFSI 共混物是具有 100 MPa 范围内杨氏模量的橡胶状材料。该材料具有较高的机械强度,能够制造出机械坚固的独立膜。三组分 PPC/PIL/LiTFSI 膜在室温下的离子电导率为 10 S·cm,表现出比双组分 PPC/LiTFSI 膜高两个数量级的电导率。在 60°C 下,PPC/PIL/LiTFSI 膜的电导率增加到 10 S·cm,在存在增塑剂的情况下进一步增加到 10 S·cm。循环伏安测量表明,三组分 PIL/PPC/LiTFSI 膜具有良好的电化学稳定性,潜在的电化学稳定范围为 0 至 4.5 V vs. Li/Li+。本工作中开发的机械增强膜是用于全固态电池的有前途的电解质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/205b/10855450/076abbaaf527/ijms-25-01595-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验