Suppr超能文献

包含聚合离子液体以提高固态电解质导电性的机械稳定聚合物网络。

Mechanically stable polymer networks incorporating polymeric ionic liquids for enhanced conductivity in solid-state electrolytes.

作者信息

Özenler Sezer, Kiriy Nataliya, Muza Upenyu L, Geisler Martin, Kiriy Anton, Voit Brigitte

机构信息

Leibniz-Institut für Polymerforschung Dresden e.V, Dresden, Germany.

beeOLED GmbH, Dresden, Germany.

出版信息

Des Monomers Polym. 2025 Jan 7;28(1):35-47. doi: 10.1080/15685551.2024.2449444. eCollection 2025.

Abstract

Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure. Molecular weights of the PIL samples, ranging from 30 to 40 kDa, were determined using a complimentary combination of thermal field-flow fractionation (ThFFF) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The aimed for networks were synthesized through the photo-initiated polymerization of a network-forming monomer and a cross-linker, in the presence of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and a PIL bearing quaternized imidazolium groups. The resulting cross-linked membranes - semi-interpenetrating networks - exhibit substantial mechanical strength, with a Young's modulus of 40-50 MPa, surpassing the threshold for solid-state battery separators, while maintaining high ionic conductivity in the range of 4 × 10 S·cm at 60°C. Notably, the introduction of oligo(ethylene glycol) moieties into the PIL structure significantly enhances ionic conductivity and allows for incorporation of a larger amount of the lithium salt compared to the alkyl-substituted analogs. Moreover, although cross-linking often impairs ionic transport as a result of restricted segmental mobility of the polymer chains, incorporation into the network of highly conductive linear PILs circumvents this issue. This unique combination of properties positions the developed membranes as promising candidates for application in solid-state lithium batteries, effectively addressing the traditional trade-off in electrolyte design.

摘要

在设计锂电池固态电解质时,提高离子电导率和机械强度仍然是一项重大挑战。这项工作提出了一种设计机械坚固且高导电固态电解质的新方法,该方法涉及基于离子液体的交联聚合物网络,其中包含聚合离子液体(PILs)。首先,合成了具有不同侧基的线性PILs以优化结构。使用热场流分级法(ThFFF)和基质辅助激光解吸/电离飞行时间质谱法(MALDI-TOF MS)分析的互补组合,测定了PIL样品的分子量,范围为30至40 kDa。通过在双(三氟甲磺酰)亚胺锂(LiTFSI)和带有季铵化咪唑基团的PIL存在下,使成网单体和交联剂进行光引发聚合,合成了目标网络。所得的交联膜——半互穿网络——表现出显著的机械强度,杨氏模量为40-50 MPa,超过了固态电池隔膜的阈值,同时在60°C下保持4×10 S·cm范围内的高离子电导率。值得注意的是,与烷基取代的类似物相比,将低聚(乙二醇)部分引入PIL结构可显著提高离子电导率,并允许掺入更多的锂盐。此外,尽管交联通常会由于聚合物链段迁移率受限而损害离子传输,但将高导电线性PIL掺入网络可避免此问题。这种独特的性能组合使所开发的膜成为固态锂电池应用的有前途的候选材料,有效解决了电解质设计中的传统权衡问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac01/11721619/05a74d92f342/TDMP_A_2449444_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验