Liu Jianliang, Cundy Thomas P, Woon Dixon T S, Lawrentschuk Nathan
E.J. Whitten Prostate Cancer Research Centre, Epworth Healthcare, Melbourne, VIC 3005, Australia.
Department of Urology, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3052, Australia.
Cancers (Basel). 2024 Jan 23;16(3):486. doi: 10.3390/cancers16030486.
Early detection of metastatic prostate cancer (mPCa) is crucial. Whilst the prostate-specific membrane antigen (PSMA) PET scan has high diagnostic accuracy, it suffers from inter-reader variability, and the time-consuming reporting process. This systematic review was registered on PROSPERO (ID CRD42023456044) and aims to evaluate AI's ability to enhance reporting, diagnostics, and predictive capabilities for mPCa on PSMA PET scans. Inclusion criteria covered studies using AI to evaluate mPCa on PSMA PET, excluding non-PSMA tracers. A search was conducted on Medline, Embase, and Scopus from inception to July 2023. After screening 249 studies, 11 remained eligible for inclusion. Due to the heterogeneity of studies, meta-analysis was precluded. The prediction model risk of bias assessment tool (PROBAST) indicated a low overall risk of bias in ten studies, though only one incorporated clinical parameters (such as age, and Gleason score). AI demonstrated a high accuracy (98%) in identifying lymph node involvement and metastatic disease, albeit with sensitivity variation (62-97%). Advantages included distinguishing bone lesions, estimating tumour burden, predicting treatment response, and automating tasks accurately. In conclusion, AI showcases promising capabilities in enhancing the diagnostic potential of PSMA PET scans for mPCa, addressing current limitations in efficiency and variability.
早期发现转移性前列腺癌(mPCa)至关重要。虽然前列腺特异性膜抗原(PSMA)PET扫描具有较高的诊断准确性,但存在阅片者间的差异以及报告过程耗时的问题。本系统评价已在国际前瞻性系统评价注册库(PROSPERO,注册号CRD42023456044)登记,旨在评估人工智能在增强PSMA PET扫描对mPCa的报告、诊断及预测能力方面的作用。纳入标准涵盖使用人工智能评估PSMA PET上mPCa的研究,不包括非PSMA示踪剂。对Medline、Embase和Scopus从创刊至2023年7月进行了检索。在筛选249项研究后,11项仍符合纳入标准。由于研究的异质性,无法进行荟萃分析。预测模型偏倚风险评估工具(PROBAST)表明,10项研究的总体偏倚风险较低,不过只有1项纳入了临床参数(如年龄和 Gleason评分)。人工智能在识别淋巴结受累和转移性疾病方面显示出较高的准确性(98%),尽管敏感性有所差异(62%-97%)。其优势包括区分骨病变、估计肿瘤负荷、预测治疗反应以及准确实现任务自动化。总之,人工智能在增强PSMA PET扫描对mPCa的诊断潜力方面展现出了有前景的能力,解决了当前在效率和变异性方面的局限性。