Suppr超能文献

基于人工智能评估 PSMA PET 扫描在前列腺内肿瘤中的应用:系统评价

A systematic review on artificial intelligence evaluating PSMA PET scan for intraprostatic cancer.

机构信息

EJ Whitten Prostate Cancer Research Centre, Epworth Healthcare, Melbourne, Victoria, Australia.

Department of Surgery, The Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.

出版信息

BJU Int. 2024 Nov;134(5):714-722. doi: 10.1111/bju.16412. Epub 2024 Jul 14.

Abstract

OBJECTIVES

To assess artificial intelligence (AI) ability to evaluate intraprostatic prostate cancer (PCa) on prostate-specific membrane antigen positron emission tomography (PSMA PET) scans prior to active treatment (radiotherapy or prostatectomy).

MATERIALS AND METHODS

This systematic review was registered on the International Prospective Register of Systematic Reviews (PROSPERO identifier: CRD42023438706). A search was performed on Medline, Embase, Web of Science, and Engineering Village with the following terms: 'artificial intelligence', 'prostate cancer', and 'PSMA PET'. All articles published up to February 2024 were considered. Studies were included if patients underwent PSMA PET scan to evaluate intraprostatic lesions prior to active treatment. The two authors independently evaluated titles, abstracts, and full text. The Prediction model Risk Of Bias Assessment Tool (PROBAST) was used.

RESULTS

Our search yield 948 articles, of which 14 were eligible for inclusion. Eight studies met the primary endpoint of differentiating high-grade PCa. Differentiating between International Society of Urological Pathology (ISUP) Grade Group (GG) ≥3 PCa had an accuracy between 0.671 to 0.992, sensitivity of 0.91, specificity of 0.35. Differentiating ISUP GG ≥4 PCa had an accuracy between 0.83 and 0.88, sensitivity was 0.89, specificity was 0.87. AI could identify non-PSMA-avid lesions with an accuracy of 0.87, specificity of 0.85, and specificity of 0.89. Three studies demonstrated ability of AI to detect extraprostatic extensions with an area under curve between 0.70 and 0.77. Lastly, AI can automate segmentation of intraprostatic lesion and measurement of gross tumour volume.

CONCLUSION

Although the current state of AI differentiating high-grade PCa is promising, it remains experimental and not ready for routine clinical application. Benefits of using AI to assess intraprostatic lesions on PSMA PET scans include: local staging, identifying otherwise radiologically occult lesions, standardisation and expedite reporting of PSMA PET scans. Larger, prospective, multicentre studies are needed.

摘要

目的

评估人工智能(AI)在主动治疗(放疗或前列腺切除术)前对前列腺特异性膜抗原正电子发射断层扫描(PSMA PET)中前列腺内前列腺癌(PCa)的评估能力。

材料和方法

本系统评价已在国际前瞻性系统评价注册库(PROSPERO 标识符:CRD42023438706)中注册。在 Medline、Embase、Web of Science 和 Engineering Village 上使用以下术语进行了搜索:“人工智能”、“前列腺癌”和“PSMA PET”。考虑了截至 2024 年 2 月发表的所有文章。如果患者在主动治疗前接受 PSMA PET 扫描以评估前列腺内病变,则纳入研究。两位作者独立评估了标题、摘要和全文。使用预测模型风险偏倚评估工具(PROBAST)进行评估。

结果

我们的搜索结果产生了 948 篇文章,其中有 14 篇符合纳入标准。八项研究符合区分高级别 PCa 的主要终点。区分国际泌尿病理学会(ISUP)分级组(GG)≥3 PCa 的准确性在 0.671 至 0.992 之间,灵敏度为 0.91,特异性为 0.35。区分 ISUP GG≥4 PCa 的准确性在 0.83 至 0.88 之间,灵敏度为 0.89,特异性为 0.87。AI 可以以 0.87 的准确性、0.85 的特异性和 0.89 的特异性识别非 PSMA 阳性病变。三项研究表明,AI 检测前列腺外延伸的能力具有 0.70 至 0.77 之间的曲线下面积。最后,AI 可以自动分割前列腺内病变并测量大体肿瘤体积。

结论

尽管 AI 目前区分高级别 PCa 的能力很有前景,但它仍然处于实验阶段,还不能用于常规临床应用。在 PSMA PET 扫描中使用 AI 评估前列腺内病变的优点包括:局部分期、识别其他影像学隐匿性病变、PSMA PET 扫描的标准化和加快报告。需要更大、前瞻性、多中心的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验