Chiu Hwa-Yen, Wang Ting-Wei, Hsu Ming-Sheng, Chao Heng-Shen, Liao Chien-Yi, Lu Chia-Feng, Wu Yu-Te, Chen Yuh-Ming
School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
Cancers (Basel). 2024 Jan 31;16(3):615. doi: 10.3390/cancers16030615.
Immunotherapy, particularly with checkpoint inhibitors, has revolutionized non-small cell lung cancer treatment. Enhancing the selection of potential responders is crucial, and researchers are exploring predictive biomarkers. Delta radiomics, a derivative of radiomics, holds promise in this regard. For this study, a meta-analysis was conducted that adhered to PRISMA guidelines, searching PubMed, Embase, Web of Science, and the Cochrane Library for studies on the use of delta radiomics in stratifying lung cancer patients receiving immunotherapy. Out of 223 initially collected studies, 10 were included for qualitative synthesis. Stratifying patients using radiomic models, the pooled analysis reveals a predictive power with an area under the curve of 0.81 (95% CI 0.76-0.86, < 0.001) for 6-month response, a pooled hazard ratio of 4.77 (95% CI 2.70-8.43, < 0.001) for progression-free survival, and 2.15 (95% CI 1.73-2.66, < 0.001) for overall survival at 6 months. Radiomics emerges as a potential prognostic predictor for lung cancer, but further research is needed to compare traditional radiomics and deep-learning radiomics.
免疫疗法,尤其是使用检查点抑制剂的免疫疗法,已经彻底改变了非小细胞肺癌的治疗方式。加强对潜在反应者的筛选至关重要,研究人员正在探索预测性生物标志物。Delta放射组学作为放射组学的一个衍生领域,在这方面具有前景。在本研究中,我们进行了一项遵循PRISMA指南的荟萃分析,在PubMed、Embase、Web of Science和Cochrane图书馆中搜索关于使用Delta放射组学对接受免疫疗法的肺癌患者进行分层的研究。在最初收集的223项研究中,有10项被纳入定性综合分析。使用放射组学模型对患者进行分层,汇总分析显示,对于6个月的反应,曲线下面积为0.81(95%CI 0.76 - 0.86,P < 0.001)的预测能力;对于无进展生存期,汇总风险比为4.77(95%CI 2.70 - 8.43,P < 0.001);对于6个月时的总生存期,风险比为2.15(95%CI 1.73 - 2.66,P < 0.001)。放射组学成为肺癌潜在的预后预测指标,但需要进一步研究来比较传统放射组学和深度学习放射组学。