Suppr超能文献

用于接受免疫治疗的肺癌患者预后分层的系列成像进展:一项系统评价和荟萃分析

Progress in Serial Imaging for Prognostic Stratification of Lung Cancer Patients Receiving Immunotherapy: A Systematic Review and Meta-Analysis.

作者信息

Chiu Hwa-Yen, Wang Ting-Wei, Hsu Ming-Sheng, Chao Heng-Shen, Liao Chien-Yi, Lu Chia-Feng, Wu Yu-Te, Chen Yuh-Ming

机构信息

School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.

Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.

出版信息

Cancers (Basel). 2024 Jan 31;16(3):615. doi: 10.3390/cancers16030615.

Abstract

Immunotherapy, particularly with checkpoint inhibitors, has revolutionized non-small cell lung cancer treatment. Enhancing the selection of potential responders is crucial, and researchers are exploring predictive biomarkers. Delta radiomics, a derivative of radiomics, holds promise in this regard. For this study, a meta-analysis was conducted that adhered to PRISMA guidelines, searching PubMed, Embase, Web of Science, and the Cochrane Library for studies on the use of delta radiomics in stratifying lung cancer patients receiving immunotherapy. Out of 223 initially collected studies, 10 were included for qualitative synthesis. Stratifying patients using radiomic models, the pooled analysis reveals a predictive power with an area under the curve of 0.81 (95% CI 0.76-0.86, < 0.001) for 6-month response, a pooled hazard ratio of 4.77 (95% CI 2.70-8.43, < 0.001) for progression-free survival, and 2.15 (95% CI 1.73-2.66, < 0.001) for overall survival at 6 months. Radiomics emerges as a potential prognostic predictor for lung cancer, but further research is needed to compare traditional radiomics and deep-learning radiomics.

摘要

免疫疗法,尤其是使用检查点抑制剂的免疫疗法,已经彻底改变了非小细胞肺癌的治疗方式。加强对潜在反应者的筛选至关重要,研究人员正在探索预测性生物标志物。Delta放射组学作为放射组学的一个衍生领域,在这方面具有前景。在本研究中,我们进行了一项遵循PRISMA指南的荟萃分析,在PubMed、Embase、Web of Science和Cochrane图书馆中搜索关于使用Delta放射组学对接受免疫疗法的肺癌患者进行分层的研究。在最初收集的223项研究中,有10项被纳入定性综合分析。使用放射组学模型对患者进行分层,汇总分析显示,对于6个月的反应,曲线下面积为0.81(95%CI 0.76 - 0.86,P < 0.001)的预测能力;对于无进展生存期,汇总风险比为4.77(95%CI 2.70 - 8.43,P < 0.001);对于6个月时的总生存期,风险比为2.15(95%CI 1.73 - 2.66,P < 0.001)。放射组学成为肺癌潜在的预后预测指标,但需要进一步研究来比较传统放射组学和深度学习放射组学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2da0/10854498/aca68f891550/cancers-16-00615-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验