Suppr超能文献

使用深度学习进行多模态纵向非侵入性诊断以预测免疫治疗中的生存率

Multimodal integration of longitudinal noninvasive diagnostics for survival prediction in immunotherapy using deep learning.

作者信息

Yeghaian Melda, Bodalal Zuhir, van den Broek Daan, Haanen John B A G, Beets-Tan Regina G H, Trebeschi Stefano, van Gerven Marcel A J

机构信息

Department of Machine Learning and Neural Computing, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 GD, The Netherlands.

Department of Radiology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands.

出版信息

J Am Med Inform Assoc. 2025 May 26. doi: 10.1093/jamia/ocaf074.

Abstract

OBJECTIVES

Immunotherapies have revolutionized the landscape of cancer treatments. However, our understanding of response patterns in advanced cancers treated with immunotherapy remains limited. By leveraging routinely collected noninvasive longitudinal and multimodal data with artificial intelligence, we could unlock the potential to transform immunotherapy for cancer patients, paving the way for personalized treatment approaches.

MATERIALS AND METHODS

In this study, we developed a novel artificial neural network architecture, multimodal transformer-based simple temporal attention (MMTSimTA) network, building upon a combination of recent successful developments. We integrated pre- and on-treatment blood measurements, prescribed medications, and CT-based volumes of organs from a large pan-cancer cohort of 694 patients treated with immunotherapy to predict mortality at 3, 6, 9, and 12 months. Different variants of our extended MMTSimTA network were implemented and compared to baseline methods, incorporating intermediate and late fusion-based integration methods.

RESULTS

The strongest prognostic performance was demonstrated using a variant of the MMTSimTA model with area under the curves of 0.84 ± 0.04, 0.83 ± 0.02, 0.82 ± 0.02, 0.81 ± 0.03 for 3-, 6-, 9-, and 12-month survival prediction, respectively.

DISCUSSION

Our findings show that integrating noninvasive longitudinal data using our novel architecture yields an improved multimodal prognostic performance, especially in short-term survival prediction.

CONCLUSION

Our study demonstrates that multimodal longitudinal integration of noninvasive data using deep learning may offer a promising approach for personalized prognostication in immunotherapy-treated cancer patients.

摘要

目的

免疫疗法彻底改变了癌症治疗的格局。然而,我们对接受免疫疗法治疗的晚期癌症的反应模式的理解仍然有限。通过利用人工智能对常规收集的非侵入性纵向和多模态数据进行分析,我们可以挖掘出为癌症患者改变免疫疗法的潜力,为个性化治疗方法铺平道路。

材料与方法

在本研究中,我们基于近期成功进展的组合,开发了一种新型人工神经网络架构,即基于多模态变换器的简单时间注意力(MMTSimTA)网络。我们整合了来自694例接受免疫疗法治疗的泛癌队列患者的治疗前和治疗期间的血液测量数据、处方药物以及基于CT的器官体积数据,以预测3、6、9和12个月时的死亡率。我们实现了扩展MMTSimTA网络的不同变体,并与基线方法进行比较,纳入了基于中间融合和晚期融合的整合方法。

结果

使用MMTSimTA模型的一个变体展示了最强的预后性能,3个月、6个月、9个月和12个月生存预测的曲线下面积分别为0.84±0.04、0.83±0.02、0.82±0.02、0.81±0.03。

讨论

我们的研究结果表明,使用我们的新型架构整合非侵入性纵向数据可提高多模态预后性能,尤其是在短期生存预测方面。

结论

我们的研究表明,使用深度学习对非侵入性数据进行多模态纵向整合可能为接受免疫疗法治疗的癌症患者的个性化预后提供一种有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验