Advanced Network Architectures Lab (CRAAX), Universitat Politècnica de Catalunya, 08800 Vilanova i la Geltrú, Spain.
Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
Sensors (Basel). 2024 Jan 24;24(3):764. doi: 10.3390/s24030764.
Despite the large impact chronic obstructive pulmonary disease (COPD) that has on the population, the implementation of new technologies for diagnosis and treatment remains limited. Current practices in ambulatory oxygen therapy used in COPD rely on fixed doses overlooking the diverse activities which patients engage in. To address this challenge, we propose a software architecture aimed at delivering patient-personalized edge-based artificial intelligence (AI)-assisted models that are built upon data collected from patients' previous experiences along with an evaluation function. The main objectives reside in proactively administering precise oxygen dosages in real time to the patient (the edge), leveraging individual patient data, previous experiences, and actual activity levels, thereby representing a substantial advancement over conventional oxygen dosing. Through a pilot test using vital sign data from a cohort of five patients, the limitations of a one-size-fits-all approach are demonstrated, thus highlighting the need for personalized treatment strategies. This study underscores the importance of adopting advanced technological approaches for ambulatory oxygen therapy.
尽管慢性阻塞性肺疾病(COPD)对人群有很大影响,但诊断和治疗新技术的实施仍然有限。目前在 COPD 中使用的门诊氧疗的实践依赖于固定剂量,而忽略了患者所从事的各种活动。为了解决这一挑战,我们提出了一种软件架构,旨在提供基于患者个人的边缘人工智能(AI)辅助模型,这些模型是基于从患者以往经验中收集的数据以及评估功能构建的。主要目标是在实时向患者(边缘)提供精确的氧气剂量,利用个体患者数据、以往经验和实际活动水平,从而代表了对传统氧气剂量的重大改进。通过对五名患者的生命体征数据进行的试点测试,证明了一刀切方法的局限性,因此强调了需要个性化的治疗策略。这项研究强调了采用先进的技术方法进行门诊氧疗的重要性。