Suppr超能文献

用于田间尺度土壤有机碳监测的光谱数据处理

Spectral Data Processing for Field-Scale Soil Organic Carbon Monitoring.

作者信息

Reyes Javier, Ließ Mareike

机构信息

Department of Soil System Science, Helmholtz Centre for Environmental Research-UFZ, 06120 Halle, Germany.

Data Science Division, Department of Agriculture, Food, and Nutrition, University of Applied Sciences Weihenstephan-Triesdorf, 91746 Weidenbach, Germany.

出版信息

Sensors (Basel). 2024 Jan 28;24(3):849. doi: 10.3390/s24030849.

Abstract

Carbon sequestration in soils under agricultural use can contribute to climate change mitigation. Spatial-temporal soil organic carbon (SOC) monitoring requires more efficient data acquisition. This study aims to evaluate the potential of spectral on-the-go proximal measurements to serve these needs. The study was conducted as a long-term field experiment. SOC values ranged between 14 and 25 g kg due to different fertilization treatments. Partial least squares regression models were built based on the spectral laboratory and field data collected with two spectrometers (site-specific and on-the-go). Correction of the field data based on the laboratory data was done by testing linear transformation, piecewise direct standardization, and external parameter orthogonalization (EPO). Different preprocessing methods were applied to extract the best possible information content from the sensor signal. The models were then thoroughly interpreted concerning spectral wavelength importance using regression coefficients and variable importance in projection scores. The detailed wavelength importance analysis disclosed the challenge of using soil spectroscopy for SOC monitoring. The use of different spectrometers under varying soil conditions revealed shifts in wavelength importance. Still, our findings on the use of on-the-go spectroscopy for spatial-temporal SOC monitoring are promising.

摘要

农业利用下土壤中的碳固存有助于缓解气候变化。时空土壤有机碳(SOC)监测需要更高效的数据采集。本研究旨在评估光谱实时近地测量满足这些需求的潜力。该研究作为一项长期田间试验进行。由于不同的施肥处理,SOC值在14至25克/千克之间。基于用两台光谱仪(定点和实时)收集的光谱实验室数据和田间数据建立了偏最小二乘回归模型。通过测试线性变换、分段直接标准化和外部参数正交化(EPO)对基于实验室数据的田间数据进行校正。应用不同的预处理方法从传感器信号中提取尽可能多的信息。然后使用回归系数和投影得分中的变量重要性对模型进行关于光谱波长重要性的深入解释。详细的波长重要性分析揭示了使用土壤光谱学进行SOC监测的挑战。在不同土壤条件下使用不同的光谱仪揭示了波长重要性的变化。尽管如此,我们关于使用实时光谱学进行时空SOC监测的研究结果很有前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验