Suppr超能文献

基于物联网(IoV)的任务调度方法,利用雾计算中的模糊逻辑技术实现车载自组织网络(VANET)。

Internet of Vehicles (IoV)-Based Task Scheduling Approach Using Fuzzy Logic Technique in Fog Computing Enables Vehicular Ad Hoc Network (VANET).

作者信息

Ehtisham Muhammad, Hassan Mahmood Ul, Al-Awady Amin A, Ali Abid, Junaid Muhammad, Khan Jahangir, Abdelrahman Ali Yahya Ali, Akram Muhammad

机构信息

Department of IT, The University of Haripur, Haripur 22620, Pakistan.

Department of Computer Skills, Deanship of Preparatory Year, Najran University, Najran 66241, Saudi Arabia.

出版信息

Sensors (Basel). 2024 Jan 29;24(3):874. doi: 10.3390/s24030874.

Abstract

The intelligent transportation system (ITS) relies heavily on the vehicular ad hoc network (VANET) and the internet of vehicles (IoVs), which combine cloud and fog to improve task processing capabilities. As a cloud extension, the fog processes' infrastructure is close to VANET, fostering an environment favorable to smart cars with IT equipment and effective task management oversight. Vehicle processing power, bandwidth, time, and high-speed mobility are all limited in VANET. It is critical to satisfy the vehicles' requirements for minimal latency and fast reaction times while offloading duties to the fog layer. We proposed a fuzzy logic-based task scheduling system in VANET to minimize latency and improve the enhanced response time when offloading tasks in the IoV. The proposed method effectively transfers workloads to the fog computing layer while considering the constrained resources of car nodes. After choosing a suitable processing unit, the algorithm sends the job and its associated resources to the fog layer. The dataset is related to crisp values for fog computing for system utilization, latency, and task deadline time for over 5000 values. The task execution, latency, deadline of task, storage, CPU, and bandwidth utilizations are used for fuzzy set values. We proved the effectiveness of our proposed task scheduling framework via simulation tests, outperforming current algorithms in terms of task ratio by 13%, decreasing average turnaround time by 9%, minimizing makespan time by 15%, and effectively overcoming average latency time within the network parameters. The proposed technique shows better results and responses than previous techniques by scheduling the tasks toward fog layers with less response time and minimizing the overall time from task submission to completion.

摘要

智能交通系统(ITS)严重依赖车载自组织网络(VANET)和车联网(IoV),它们结合了云和雾来提高任务处理能力。作为云的扩展,雾处理基础设施靠近VANET,为配备IT设备的智能汽车营造了有利环境,并进行有效的任务管理监督。在VANET中,车辆的处理能力、带宽、时间和高速移动性都受到限制。在将任务卸载到雾层时,满足车辆对最小延迟和快速反应时间的要求至关重要。我们提出了一种基于模糊逻辑的VANET任务调度系统,以在车联网卸载任务时最小化延迟并提高增强响应时间。该方法在考虑汽车节点资源受限的情况下,有效地将工作负载转移到雾计算层。选择合适的处理单元后,算法将任务及其相关资源发送到雾层。该数据集与雾计算的清晰值相关,用于系统利用率、延迟以及超过5000个值的任务截止时间。任务执行、延迟、任务截止时间、存储、CPU和带宽利用率用于模糊集值。我们通过模拟测试证明了所提出任务调度框架的有效性,在任务比率方面比当前算法高出13%,平均周转时间减少9%,完工时间最小化15%,并有效克服了网络参数内的平均延迟时间。通过以更少的响应时间将任务调度到雾层,并最小化从任务提交到完成的总时间,所提出的技术比以前的技术显示出更好的结果和响应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc25/10857561/2498b48262b0/sensors-24-00874-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验