Herrera-Casanova Reinier, Conde Arturo, Santos-Pérez Carlos
Faculty of Mechanical and Electrical Engineering, Autonomous University of Nuevo León, San Nicolás de los Garza 66455, Mexico.
Department of Signal Theory and Communications, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain.
Sensors (Basel). 2024 Jan 29;24(3):882. doi: 10.3390/s24030882.
Photovoltaic (PV) power prediction plays a critical role amid the accelerating adoption of renewable energy sources. This paper introduces a bidirectional long short-term memory (BiLSTM) deep learning (DL) model designed for forecasting photovoltaic power one hour ahead. The dataset under examination originates from a small PV installation located at the Polytechnic School of the University of Alcala. To improve the quality of historical data and optimize model performance, a robust data preprocessing algorithm is implemented. The BiLSTM model is synergistically combined with a Bayesian optimization algorithm (BOA) to fine-tune its primary hyperparameters, thereby enhancing its predictive efficacy. The performance of the proposed model is evaluated across diverse meteorological and seasonal conditions. In deterministic forecasting, the findings indicate its superiority over alternative models employed in this research domain, specifically a multilayer perceptron (MLP) neural network model and a random forest (RF) ensemble model. Compared with the MLP and RF reference models, the proposed model achieves reductions in the normalized mean absolute error (nMAE) of 75.03% and 77.01%, respectively, demonstrating its effectiveness in this type of prediction. Moreover, interval prediction utilizing the bootstrap resampling method is conducted, with the acquired prediction intervals carefully adjusted to meet the desired confidence levels, thereby enhancing the robustness and flexibility of the predictions.
在可再生能源加速采用的背景下,光伏发电(PV)功率预测起着至关重要的作用。本文介绍了一种双向长短期记忆(BiLSTM)深度学习(DL)模型,该模型旨在提前一小时预测光伏发电功率。所研究的数据集来自阿尔卡拉大学理工学院的一个小型光伏装置。为了提高历史数据的质量并优化模型性能,实施了一种强大的数据预处理算法。BiLSTM模型与贝叶斯优化算法(BOA)协同结合,以微调其主要超参数,从而提高其预测效果。在不同的气象和季节条件下对所提出模型的性能进行了评估。在确定性预测中,研究结果表明其优于该研究领域中使用的其他模型,特别是多层感知器(MLP)神经网络模型和随机森林(RF)集成模型。与MLP和RF参考模型相比,所提出的模型分别将归一化平均绝对误差(nMAE)降低了75.03%和77.01%,证明了其在这类预测中的有效性。此外,利用自助重采样方法进行区间预测,并对获得的预测区间进行仔细调整以满足所需的置信水平,从而提高预测的稳健性和灵活性。