Singla Pardeep, Duhan Manoj, Saroha Sumit
Deenbandhu Chhotu Ram University of Science & Technology, Sonepat, India.
Guru Jambheshwar University of Science and Technology, Hisar, India.
Earth Sci Inform. 2022;15(1):291-306. doi: 10.1007/s12145-021-00723-1. Epub 2021 Nov 17.
In recent years, the penetration of solar power at residential and utility levels has progressed exponentially. However, due to its stochastic nature, the prediction of solar global horizontal irradiance (GHI) with higher accuracy is a challenging task; but, vital for grid management: planning, scheduling & balancing. Therefore, this paper proposes an ensemble model using the extended scope of wavelet transform (WT) and bidirectional long short term memory (BiLSTM) deep learning network to forecast 24-h ahead solar GHI. The WT decomposes the input time series data into different finite intrinsic model functions (IMF) to extract the statistical features of input time series. Further, the study reduces the number of IMF series by combining the wavelet decomposed components (D1-D6) series on the basis of comprehensive experimental analysis with an aim to improve the forecasting accuracy. Next, the trained standalone BiLSTM networks are allocated to each IMF sub-series to execute the forecasting. Finally, the forecasted values of each sub-series from BiLSTM networks are reconstructed to deliver the final solar GHI forecast. The study performed monthly solar GHI forecasting for one year dataset using one month moving window mechanism for the location of Ahmedabad, Gujarat, India. For the performance comparison, the naïve predictor as a benchmark model, standalone long short term memory (LSTM), gated recurrent unit (GRU), BiLSTM and two other wavelet-based BiLSTM models are also simulated. From the results, it is observed that the proposed model outperforms other models in terms of root mean square error (RMSE) & mean absolute percentage error (MAPE), coefficient of determination (R) and forecast skill (FS). The proposed model reduces the monthly average RMSE by range from 26.04-58.89%, 5.17-31.35%, 23.26-56.06% & 21.08-57% in comparison with benchmark, standalone BiLSTM, GRU & LSTM networks respectively. On the other hand, the monthly average MAPE is reduced by range from 9 to 51.18%, 12.59-28.14%, 30.43-59.19% & 26.54-58.92% in comparison to benchmark, standalone BiLSTM, GRU & LSTM respectively. Further, the proposed model obtained the value of R equal to 0.94 and forecast skill (%) of 47% with reference to the benchmark model.
近年来,太阳能在住宅和公用事业层面的普及率呈指数级增长。然而,由于其随机性,高精度预测太阳全球水平辐照度(GHI)是一项具有挑战性的任务;但对于电网管理(规划、调度和平衡)而言至关重要。因此,本文提出一种集成模型,该模型使用扩展范围的小波变换(WT)和双向长短期记忆(BiLSTM)深度学习网络来提前24小时预测太阳GHI。WT将输入时间序列数据分解为不同的有限固有模态函数(IMF),以提取输入时间序列的统计特征。此外,该研究在综合实验分析的基础上,通过组合小波分解分量(D1 - D6)序列来减少IMF序列的数量,旨在提高预测精度。接下来,将经过训练的独立BiLSTM网络分配给每个IMF子序列以执行预测。最后,对BiLSTM网络中每个子序列的预测值进行重构,以得出最终的太阳GHI预测结果。该研究使用一个月移动窗口机制,对印度古吉拉特邦艾哈迈达巴德地区一年的数据进行了月度太阳GHI预测。为了进行性能比较,还模拟了作为基准模型的朴素预测器、独立长短期记忆(LSTM)、门控循环单元(GRU)、BiLSTM以及其他两种基于小波的BiLSTM模型。从结果可以看出,所提出的模型在均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数(R)和预测技能(FS)方面优于其他模型。与基准模型、独立BiLSTM、GRU和LSTM网络相比,所提出的模型分别将月度平均RMSE降低了26.04 - 58.89%、5.17 - 31.35%、23.26 - 56.06%和21.08 - 57%。另一方面,与基准模型、独立BiLSTM、GRU和LSTM相比,月度平均MAPE分别降低了9 - 51.18%、12.59 - 28.14%、30.43 - 59.19%和26.54 - 58.92%。此外,相对于基准模型,所提出的模型获得的R值等于0.94,预测技能(%)为47%。