Suppr超能文献

面向灵活低功耗无线智能传感器:医疗应用中的可重构模拟到特征转换。

Towards Flexible and Low-Power Wireless Smart Sensors: Reconfigurable Analog-to-Feature Conversion for Healthcare Applications.

机构信息

C2S Team, ComElec Department, Laboratoire de Traitement et Communication de l'Information (LTCI), Télécom Paris, Institut Polytechnique de Paris, 19 Place Marguerite Perey, 91120 Palaiseau, France.

出版信息

Sensors (Basel). 2024 Feb 3;24(3):999. doi: 10.3390/s24030999.

Abstract

Analog-to-feature (A2F) conversion based on non-uniform wavelet sampling (NUWS) has demonstrated the ability to reduce energy consumption in wireless sensors while employed for electrocardiogram (ECG) anomaly detection. The technique involves extracting only relevant features for a given task directly from analog signals and conducting classification in the digital domain. Building on this approach, we extended the application of the proposed generic A2F converter to address a human activity recognition (HAR) task. The performed simulations include the training and evaluation of neural network (NN) classifiers built for each application. The corresponding results enabled the definition of valuable features and the hardware specifications for the ongoing complete circuit design. One of the principal elements constituting the developed converter, the integrator brought from the state-of-the-art design, was modified and simulated at the circuit level to meet our requirements. The revised value of its power consumption served to estimate the energy spent by the communication chain with the A2F converter. It consumes at least 20 and 5 times less than the chain employing the Nyquist approach in arrhythmia detection and HAR tasks, respectively. This fact highlights the potential of A2F conversion with NUWS in achieving flexible and energy-efficient sensor systems for diverse applications.

摘要

基于非均匀小波采样(NUWS)的模拟-特征(A2F)转换已证明能够在用于心电图(ECG)异常检测时降低无线传感器的能耗。该技术涉及直接从模拟信号中提取给定任务的相关特征,并在数字域中进行分类。在此基础上,我们将提出的通用 A2F 转换器的应用扩展到解决人类活动识别(HAR)任务。所进行的模拟包括为每个应用程序构建的神经网络(NN)分类器的训练和评估。相应的结果使我们能够定义有价值的特征和正在进行的完整电路设计的硬件规格。构成所开发的转换器的主要元件之一,即从最先进的设计中带来的积分器,在电路级别进行了修改和模拟,以满足我们的要求。其功耗的修正值用于估计与 A2F 转换器的通信链所消耗的能量。在心律失常检测和 HAR 任务中,与采用奈奎斯特方法的链路相比,它分别至少消耗 20 倍和 5 倍的能量。这一事实突出了在实现灵活和节能传感器系统方面,基于 NUWS 的 A2F 转换具有巨大潜力,可应用于各种应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ac/10857767/51a63b2363c3/sensors-24-00999-g001.jpg

相似文献

2
A level-crossing based QRS-detection algorithm for wearable ECG sensors.
IEEE J Biomed Health Inform. 2014 Jan;18(1):183-92. doi: 10.1109/JBHI.2013.2274809.
3
Low-power analog integrated circuits for wireless ECG acquisition systems.
IEEE Trans Inf Technol Biomed. 2012 Sep;16(5):907-17. doi: 10.1109/TITB.2012.2188412. Epub 2012 Feb 24.
4
A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors.
IEEE Trans Biomed Circuits Syst. 2014 Dec;8(6):834-43. doi: 10.1109/TBCAS.2013.2296942.
5
Second-Order Level-Crossing Sampling Analog to Digital Converter for Electrocardiogram Delineation and Premature Ventricular Contraction Detection.
IEEE Trans Biomed Circuits Syst. 2023 Dec;17(6):1342-1354. doi: 10.1109/TBCAS.2023.3296529. Epub 2024 Jan 10.
7
A low power level-crossing ADC for wearable wireless ECG sensors.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3543-3546. doi: 10.1109/EMBC.2016.7591493.
8
In-sensor neural network for high energy efficiency analog-to-information conversion.
Sci Rep. 2022 Oct 29;12(1):18253. doi: 10.1038/s41598-022-23100-4.

本文引用的文献

1
Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances.
Sensors (Basel). 2022 Feb 14;22(4):1476. doi: 10.3390/s22041476.
2
A 2.63 μW ECG Processor With Adaptive Arrhythmia Detection and Data Compression for Implantable Cardiac Monitoring Device.
IEEE Trans Biomed Circuits Syst. 2021 Aug;15(4):777-790. doi: 10.1109/TBCAS.2021.3100434. Epub 2021 Sep 15.
4
A 1.2nW Analog Electrocardiogram Processor Achieving a 99.63% QRS Complex Detection Sensitivity.
IEEE Trans Biomed Circuits Syst. 2021 Jun;15(3):617-628. doi: 10.1109/TBCAS.2021.3092729. Epub 2021 Aug 12.
5
Predictive Maintenance and Intelligent Sensors in Smart Factory: Review.
Sensors (Basel). 2021 Feb 20;21(4):1470. doi: 10.3390/s21041470.
6
LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
Sensors (Basel). 2021 Feb 26;21(5):1636. doi: 10.3390/s21051636.
7
Hardware Implementation of Deep Network Accelerators Towards Healthcare and Biomedical Applications.
IEEE Trans Biomed Circuits Syst. 2020 Dec;14(6):1138-1159. doi: 10.1109/TBCAS.2020.3036081. Epub 2020 Dec 31.
10
Neuromemristive Circuits for Edge Computing: A Review.
IEEE Trans Neural Netw Learn Syst. 2020 Jan;31(1):4-23. doi: 10.1109/TNNLS.2019.2899262. Epub 2019 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验